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Chapter One

Propositional Logic and Set Theory

In this chapter, we study the basic concepts of propositional logic and some part of set theory. In the
first part, we deal about propositional logic, logical connectives, quantifiers and arguments. In the
second part, we turn our attention to set theory and discus about description of sets and operations of
sets.

Main Objectives of this Chapter
At the end of this chapter, students will be able to:-
+* Know the basic concepts of mathematical logic.
+» Know methods and procedures in combining the validity of statements.
++ Understand the concept of quantifiers.
+» Know basic facts about argument and validity.
¢ Understand the concept of set.
«» Apply rules of operations on sets to find the result.

++» Show set operations using Venn diagrams.

1.1. Propositional Logic

Mathematical or symbolic logic is an analytical theory of the art of reasoning whose goal is to
systematize and codify principles of valid reasoning. It has emerged from a study of the use of language
in argument and persuasion and is based on the identification and examination of those parts of
language which are essential for these purposes. It is formal in the sense that it lacks reference to
meaning. Thereby it achieves versatility: it may be used to judge the correctness of a chain of reasoning
(in particular, a "mathematical proof") solely on the basis of the form (and not the content) of the
sequence of statements which make up the chain. There is a variety of symbolic logics. We shall be
concerned only with that one which encompasses most of the deductions of the sort encountered in

mathematics. Within the context of logic itself, this is "classical" symbolic logic.
Section objectives:
After completing this section, students will be able to:-

v' Identify the difference between proposition and sentence.

v" Describe the five logical connectives.



Determine the truth values of propositions using the rules of logical connectives.
Construct compound propositions using the five logical connectives.
Identify the difference between the converse and contrapositive of conditional statements.

Determine the truth values of compound propositions.
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Distinguish a given compound proposition is whether tautology or contradiction.

1.1.1. Definition and examples of propositions
Consider the following sentences.

2 is an even number.
A triangle has four sides.
Athlete Haile G/silassie weighed 45 kg when he was 20 years old.
May God bless you!
Give me that book.
f. What is your name?
The first three sentences are declarative sentences. The first one is true and the second one is false. The
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truth value of the third sentence cannot be ascertained because of lack of historical records but it is, by
its very form, either true or false but not both. On the other hand, the last three sentences have no
truth value. So they are not declaratives.

Now we begin by examining proposition, the building blocks of every argument. A proposition is a
sentence that may be asserted or denied. Proposition in this way are different from questions,
commands, and exclamations. Neither questions, which can be asked, nor exclamations, which can be
uttered, can possibly be asserted or denied. Only propositions assert that something is (or is not) the
case, and therefore only they can be true or false.

Definition 1.1: A proposition (or statement) is a sentence which has a truth value (either True or False
but not both).

The above definition does not mean that we must always know what the truth value is. For example,
the sentence “The 1000™ digit in the decimal expansion of m is 7” is a proposition, but it may be
necessary to find this information in a Web site on the Internet to determine whether this statement is
true. Indeed, for a sentence to be a proposition (or a statement), it is not a requirement that we are able
to determine its truth value.

Every proposition has a truth value, namely true (denoted by T) or false (denoted by F).

1.1.2. Logical connectives

In mathematical discourse and elsewhere one constantly encounters declarative sentences which have
been formed by modifying a statement with the word “not” or by connecting statements with the words
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“and”, “or”, “if . . . then (or implies)”, and “if and only if”. These five words or combinations of words are
called propositional connectives.

Note: Letters such as p, g, 1, s etc. are usually used to denote propositions.

Conjunction

When two propositions are joined with the connective “and,” the proposition formed is a logical
conjunction. “and” is denoted by “A”. So, the logical conjunction of two propositions, p and g, is

written:

pAq, readas“pandgq,” or“p conjunctionq”.

p and g are called the components of the conjunction. p A q is true if and only if p is true and q is true.

The truth table for conjunction is given as follows:

4 q PAq

T T T
T F F
F T F
F F F

Example 1.1: Consider the following propositions:
p: 3is an odd number. (True)

q: 27 is a prime number. (False)

r: Addis Ababa is the capital city of Ethiopia. (True)

a. p Aq:3isanodd number and 27 is a prime number. (False)
b. p Ar:3isanodd number and Addis Ababa is the capital city of Ethiopia. (True)

Disjunction

When two propositions are joined with the connective “or,” the proposition formed is called a logical

“ 4

disjunction. “or” is denoted by “iw”. So, the logical disjunction of two propositions, p and g, is written:

p Vq readas “porq” or “p disjunction q.”




pV q is false if and only if both p and g are false.

The truth table for disjunction is given as follows:

p q pvq

T T T
T F T
F T T
F F F

Example 1.2: Consider the following propositions:
p: 3is an odd number. (True)

q: 27 is a prime number. (False)

s: Nairobi is the capital city of Ethiopia. (False)

a. pVq:3isanodd number or 27 is a prime number. (True)

b. pVs:27isaprime number or Nairobi is the capital city of Ethiopia. (False)
Note: The use of “or” in propositional logic is rather different from its normal use in the English
language. For example, if Solomon says, “I will go to the football match in the afternoon or | will go to
the cinema in the afternoon,” he means he will do one thing or the other, but not both. Here “or” is
used in the exclusive sense. But in propositional logic, “or” is used in the inclusive sense; that is, we
allow Solomon the possibility of doing both things without him being inconsistent.

Implication

When two propositions are joined with the connective “implies,” the proposition formed is called a
logical implication. “implies” is denoted by “=.” So, the logical implication of two propositions, p and g,
is written:

p = q read as “p implies q.”

The function of the connective “implies” between two propositions is the same as the use of “If ... then
... Thus p = q can be read as “if p, then q.”

p = q is false if and only if p is true and q is false.




This form of a proposition is common in mathematics. The proposition p is called the hypothesis or the
antecedent of the conditional proposition p = q while q is called its conclusion or the consequent.

The following is the truth table for implication.

p q P=4q

T T T
T F F
F T T
F F T

Examples 1.3: Consider the following propositions:
p: 3 is an odd number. (True)
q: 27 is a prime number. (False)
r: Addis Ababa is the capital city of Ethiopia. (True)
p = q: If 3is an odd number, then 27 is prime. (False)
p = r:If 3is an odd number, then Addis Ababa is the capital city of Ethiopia. (True)

We have already mentioned that p = q can be expressed as both “If p, then g” and “p implies q. ”
There are various ways of expressing the proposition p = g, namely:

If p, then g.

qifp.

p implies q.
ponlyifq.
p is sufficient for q.

q is necessary for p

Bi-implication

When two propositions are joined with the connective “bi-implication,” the proposition formed is called
a logical bi-implication or a logical equivalence. A bi-implication is denoted by “=". So the logical bi-




implication of two propositions, p and g, is written:

p<=q.

p & q is false if and only if p and g have different truth values.

The truth table for bi-implication is given by:

p q P=q

T T T
T F F
F T F
F F T

Examples 1.4:

a. Letp: 2is greater than 3. (False)
q: 5 is greater than 4. (True)
Then
p & q: 2is greater than 3 if and only if 5 is greater than 4. (False)
b. Consider the following propositions:
p: 3 is an odd number. (True)
q: 2 is a prime number. (True)
p © q: 3isan odd number if and only if 2 is a prime number. (True)

There are various ways of stating the proposition p < q.
p if and only if g (also written as p iff q),
p implies g and g implies p,
p is necessary and sufficient for q
q is necessary and sufficient for p

p is equivalent to g

Negation

Given any proposition p, we can form the proposition —p called the negation of p. The truth value of —p




isFifpisTandT ifpisF.

We can describe the relation between p and —p as follows.

p —p
T F
F T

Example 1.5: Let p: Addis Ababa is the capital city of Ethiopia. (True)

—p: Addis Ababa is not the capital city of Ethiopia. (False)

Exercises

1. Which of the following sentences are propositions? For those that are, indicate the truth

value.

123 is a prime number.

0 is an even number.
x?—4=0.

Multiply 5x + 2 by 3.

What an impossible question!
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2. State the negation of each of the following statements.

a. /2 is arational number.
b. 0is not a negative integer.
c. 111 isa prime number.
3. Letp:15isan odd number.
q: 21 is a prime number.

State each of the following in words, and determine the truth value of each.

pAg.

o0 o w

pVvgq. e.

f
g

p=4q.
q=7p-:




4. Complete the following truth table.

p q —q PA—q

T T
T F
F T
F F

1.1.3. Compound (or complex) propositions

So far, what we have done is simply to define the logical connectives, and express them through
algebraic symbols. Now we shall learn how to form propositions involving more than one connective,
and how to determine the truth values of such propositions.

Definition 1.2: The proposition formed by joining two or more proposition by connective(s) is called a
compound statement.

Note: We must be careful to insert the brackets in proper places, just as we do in arithmetic. For
example, the expression p = q A r will be meaningless unless we know which connective should apply
first. It could mean (p = q) Ar or p = (q A1), which are very different propositions. The truth value
of such complicated propositions is determined by systematic applications of the rules for the
connectives.

The possible truth values of a proposition are often listed in a table, called a truth table. If p and g are
propositions, then there are four possible combinations of truth values for p and q. Thatis, TT, TF, FT
and FF. If a third proposition r is involved, then there are eight possible combinations of truth values
for p,q and r. In general, a truth table involving “n” propositions p;, p,,..., b, contains 2™ possible
combinations of truth values. So, we use truth tables to determine the truth value of a compound

proposition based on the truth value of its constituent component propositions.

Examples 1.6:

a. Suppose p and r are true and g and s are false.
What is the truth value of (p Aq) = (r Vv s)?

i. Sincep istrue and q is false, p A q is false.
ii. Since r is true and s is false, r Vv s is true.
iii. Thus by applying the rule of implication, we get that (p A q) = (r Vv s) is true.




b. Suppose that a compound proposition is symbolized by
(pVvq) = (re=-s)

and that the truth values of p,q,7, and sare T, F, F, and T, respectively. Then the truth value of p vV q is
T, that of —sis F, thatof r & —sis T. So the truth value of (p Vq) = (r & —s)is T.

Remark: When dealing with compound propositions, we shall adopt the following convention on the use
of parenthesis. Whenever “¥” or “/A” occur with “=" or “—=", we shall assume that “v" or “M" is

applied first, and then “==" or “~=" is then applied. For example,

pAgq=rmeans(pAq) =T
pvVgermeans(pVvVqg) &r
—q = —p means (—=q) = (-p)
—q=permeans((—q) =p) =T

However, it is always advisable to use brackets to indicate the order of the desired operations. .

Definition 1.3: Two compound propositions P and Q are said to be equivalent if they have the same
truth value for all possible combinations of truth values for the component propositions occurring in
both P and Q. In this case we write P = Q.

Example 1.7: LetP:p = q.

p q P 7q | P=(q —q = —p

T T F F T T
T F F T F F
F T T F T T
F F T T T T

Then, P is equivalent to @, since columns 5 and 6 of the above table are identical.
Example 1.8: LetP:p = q.

Then




T T F F T T
T F F T F T
F T T F T F
F F T T T T

Looking at columns 5 and 6 of the table we see that they are not identical. Thus P # Q.

It is useful at this point to mention the non-equivalence of certain conditional propositions. Given the
conditional p = ¢, we give the related conditional propositions:-

q=p: Converse of p = ¢q
—p = —q: Inverse of p = ¢q
—q = —p: Contrapositive of p = ¢q

As we observed from example 1.7, the conditional p = q and its contrapositve —q = —p are
equivalent. On the otherhand, p = q# q = pandp = q Z —p = —q .

Do not confuse the contrapositive and the converse of the conditional proposition. Here is the
difference:

Converse: The hypothesis of a converse statement is the conclusion of the conditional statement and
the conclusion of the converse statement is the hypothesis of the conditional statement.

Contrapositive: The hypothesis of a contrapositive statement is the negation of conclusion of the
conditional statement and the conclusion of the contrapositive statement is the negation of hypothesis
of the conditional statement.

Example 1.9:

a. If Kidist lives in Addis Ababa, then she lives in Ethiopia.
Converse: If Kidist lives in Ethiopia, then she lives in Addis Ababa.
Contrapositive: If Kidist does not live in Ethiopia, then she does not live in Addis
Ababa.
Inverse: If Kidist does not live in Addis Ababa, then she does not live in Ethiopia.
b. If it is morning, then the sun is in the east.
Converse: If the sun is in the east, then it is morning.
Contrapositive: If the sun is not in the east, then it is not morning.
Inverse: If it is not morning, then the sun is not the east.



Propositions, under the relation of logical equivalence, satisfy various laws or identities, which are listed

below.
1. Idempotent Laws
a. p=pVp.
b. p=pAp.
2. Commutative Laws

a pANq=qAp.
b. pvg=qVp.
3. Associative Laws
a pA(@ATr)=(pAg)AT.
b. pv(qvr)=(pVvq)Vvr.
4, Distributive Laws
a pv@An=@EVveA(pVvr).
b. pA(@Vr)=(@AqV(pAT).
5. De Morgan’s Laws
6. Law of Contrapositive

7. Complement Law
—(=p) =p.

1.1.4. Tautology and contradiction

Definition: A compound proposition is a tautology if it is always true regardless of the truth values of its
component propositions. If, on the other hand, a compound proposition is always false regardless of its
component propositions, we say that such a proposition is a contradiction.

Note: A proposition that is neither a tautology nor a contradiction is called a contingency.
Examples 1.10:
a. Suppose p is any proposition. Consider the compound propositions p V —p and p A —p.
p —p pvV—-p PpA-Dp
T F T F

F T T F




Observe that p vV —p is a tautology while p A —p is a contradiction.
b. For any propositions p and g. Consider the compound proposition p = (¢ = p). Letus
make a truth table and study the situation.

p 9 q=p  p=>@=Dp)

T | T T T
T | F T T
F | T F T
F | F T T

We have exhibited all the possibilities and we see that for all truth values of the constituent
propositions, the proposition p = (q = p) is always true. Thus, p = (q = p) is a tautology.

c. The truth table for the compound proposition (p = q) < (p A —q).

p q -9 pA—-q pP=>q  @=q9 < @PAr-q)

T T F F T F
T F T T F F
F T F F T F
F F T F T F

In example 1.10(c), the given compound proposition has a truth value F for every possible combination
of assignments of truth values for the component propositions p and q. Thus (p = q) © (pA—q) isa
contradiction.

Remark:

1. In atruth table, if a proposition is a tautology, then every line in its column has T as its
entry; if a proposition is a contradiction, every line in its column has F as its entry.
2. Two compound propositions P and Q are equivalent if and only if “P & Q” is a
tautology.
Exercises
1. For statements p, g and r, use a truth table to show that each of the following pairs of
“ statements are logically equivalent.
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(pAg) @ pandp = q.

p=(qvr)and—-q = (—p Vr).

(pvg=rand(p=q)A(@q=r).

p=(@Vvr)and (-r) = (p = q).

p= (qVvr)and ((—r) Ap) = q.

For statements p, q, and r, show that the following compound statements are tautology.
a p= (V.

b. A= 4q) =4

C. ((p:q)/\(q:r))ﬁ (p =r).

For statements p and q, show that (p A —q) A (p A q) is a contradiction.

Write the contrapositive and the converse of the following conditional statements.
a. Ifitiscold, then the lake is frozen.

b. If Solomon is healthy, then he is happy.

c. Ifitrains, Tigist does not take a walk.

Let p and q be statements. Which of the following implies that p v q is false?

a. —pV—q is false. d. p = qistrue.

b. —pVqistrue. e. pAgqisfalse.

C. —p A—qistrue.
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Suppose that the statements p, g, r, and s are assigned the truth values T, F, F, and T,
respectively. Find the truth value of each of the following statements.

a. (pvq)Vvr. f. (pvr)e (rA—s).

b. pv(gqVvr). g (sep)=(—pVs).

c. r= (sAp). h. (gA—s) = (p & s).

d p= (@ =s). i. (ras)= (p=(—qVys)).
e. p=(rvs). jo V=q)Vr = (sA-s).

Suppose the value of p = q is T; what can be said about the value of -pAq & p Vv q?

. a. Suppose the value of p < q is T; what can be said about the values of p & —q and

—p & q?
b. Suppose the value of p < q is F; what can be said about the values of p < —q and
—p & q?
Construct the truth table for each of the following statements.
a. p=@=q. d @=q = (prVva.
b. (0Vq) = (qVp). e. (p=(@AN))V(PArQ.
C. p==(qAm). f. WAqQ) = (qA—q) = (rAQ)).

For each of the following determine whether the information given is sufficient to decide
the truth value of the statement. If the information is enough, state the truth value. If it is
insufficient, show that both truth values are possible.



(p = q) =r,wherer =T.
pA(@=r),whereq =r=T.
pV(q@=r),whereq=r=T.

—~(pVq) © (—p A—q),wherepVvq=T.
(p=q) = (—q = —p),whereq =T.
(pAq) = (pVs),wherep=Tands =F.
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1.2. Open propositions and quantifiers

In mathematics, one frequently comes across sentences that involve a variable. For example,
x% + 2x — 3 = 0 is one such. The truth value of this statement depends on the value we assign for the
variable x. For example, if x = 1, then this sentence is true, whereas if x = —1, then the sentence is
false.

Section objectives:
After completing this section, students will be able to:-
v Define open proposition.
Explain and exemplify the difference between proposition and open proposition.
Identify the two types of quantifiers.
Convert open propositions into propositions using quantifiers.
Determine the truth value of a quantified proposition.
Convert a quantified proposition into words and vise versa.

Explain the relationship between existential and universal quantifiers.
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Analyze quantifiers occurring in combinations.

Definition 1.4: An open statement (also called a predicate) is a sentence that contains one or more
variables and whose truth value depends on the values assigned for the variables. We represent an open
statement by a capital letter followed by the variable(s) in parenthesis, e.g., P(x), Q(x), R(x, y) etc.

Example 1.11: Here are some open propositions:

x is the day before Sunday.
y is a city in Africa.

x Is greater than y.
x+4=-9
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It is clear that each one of these examples involves variables, but is not a proposition as we cannot
assign a truth value to it. However, if individuals are substituted for the variables, then each one of them
is a proposition or statement. For example, we may have the following.

a. Monday is the day before Sunday.
b. London is a city in Africa.
c. 5isgreater than 9.
d -13+4=-9
Remark

The collection of all allowable values for the variable in an open sentence is called the universal set (the
universe of discourse) and denoted by U.

Definition 1.5: Two open proposition P(x) and Q(x) are said to be equivalent if and only if

P(a) = Q(a) for all individual a. Note that if the universe U is specified, then P(x) and Q(x) are
equivalent if and only if P(a) = Q(a) foralla € U.

Example 1.12: Let P(x):x2 — 1 = 0.

Q(x):|x| = 1.
letU = {~1,—2,0,1}

Then for all a € U; P(a) and Q(a) have the same truth value.

P(-1):(-1)?2=1=0 (T) Q(-1:|-1]=1 (T)
P -1=0 ()  o(=3):l=3l=1 @
P(0):0—-1=0 (F) Q(0):10] =1 (F)
P(1):1-1=0 (T) Q(: 1l =1 (T)

Therefore P(a) = Q(a) forall a € U.

Definition 1.6: Let U be the universal set. An open proposition P(x) is a tautology if and only if P(a) is
always true for all values of a € U.

Example 1.13: The open proposition P(x): x% > 0 is a tautology.

As we have observed in example 1.11, an open proposition can be converted into a proposition by
substituting the individuals for the variables. However, there are other ways that an open proposition
can be converted into a proposition, namely by a method called quantification. Let P(x) be an open
proposition over the domain S. Adding the phrase “For every x € S” to P(x) or “For some x € S” to
P(x) produces a statement called a quantified statement.




Consider the following open propositions with universe K.

a. R(x):x*>>0.
b. P(x):(x+2)(x—3)=0.
c. Q(x):x?2<0,
Then R(x) is always true for each x € R,

P(x)istrueonly forx = —2and x = 3,
Q(x) is always false for all values of x € R.
Hence, given an open proposition P(x), with universe U, we observe that there are three possibilities.

a. P(x)istrueforallx e U.

b. P(x) istrue forsome x € U.

c. P(x)isfalse forall x € U.
Now we proceed to study open propositions which are satisfied by “all” and “some” members of the
given universe.

a. The phrase "for every x " is called a universal quantifier. We regard "for every x," "for all x,"
and "for each x " as having the same meaning and symbolize each by “(Vx).” Think of the
symbol % as an inverted A(representing all). If P(x) is an open proposition with universe U, then
(Vx)P(x) is a quantified proposition and is read as “every x € U has the property P.”

b. The phrase "there exists an x " is called an existential quantifier. We regard "there exists an x,"
"for some x," and "for at least one x " as having the same meaning, and symbolize each by
“(3x).” Think of the symbol 3 as the backwards capital E(representing exists). If P(x) is an
open proposition with universe U, then (3x)P(x) is a quantified proposition and is read as “there
exists x € U with the property P.”

Remarks:

i. To show that (Vx)P(x) is F, it is sufficient to find at least one a € U such that P(a) is
F. Such an element a € U is called a counter example.
ii. (3x)P(x) is F if we cannot find any a € U having the property P.

Example 1.14:

a. Write the following statements using quantifiers.
I For each real number x > 0,x%> + x — 6 = 0.
Solution: (Vx > 0)(x2 +x — 6 = 0).
ii. There is a real number x > 0 such that x2 + x — 6 = 0.
Solution: (3x > 0)(x? + x — 6 = 0).




iii. The square of any real number is nonnegative.
Solution: (Vx € R)(x? = 0).

i. LetP(x):x?+ 1= 0. The truth value for (Vx)P(x) [i.e (Vx)(x2+ 1 > 0)]isT.
ii. Let P(x):x < x2. The truth value for (Vx)(x < x?)isF.x = % is a

counterexample since % € R but % < %. On the other hand, (3x)P(x) is true, since

—1 e Rsuchthat —1 < 1.
iii. Let P(x):|x| = —1. The truth value for (3x)P(x) is F since there is no real
number whose absolute value is —1.

Relationship between the existential and universal quantifiers

If P(x) is a formula in x, consider the following four statements.

a. (Vx)P(x).
b. (3x)P(x).
c. (Vx)—=P(x).
d. (3x)—P(x).

We might translate these into words as follows.

a. Everything has property P.

b. Something has property P.

c. Nothing has property P.

d. Something does not have property P.

Now (d) is the denial of (a), and (c) is the denial of (b), on the basis of everyday meaning. Thus, for
example, the existential quantifier may be defined in terms of the universal quantifier.

Now we proceed to discuss the negation of quantifiers. Let P(x) be an open proposition. Then

|Il

(Vx)P(x) is false only if we can find an individual “a” in the universe such that P(a) is false. If we

succeed in getting such an individual, then (3x)—P(x) is true. Hence (Vx)P(x) will be false if
(3x)—P(x) is true. Therefore the negation of (Vx)P(x) is (3x)—P(x). Hence we conclude that

—(Vx)P(x) = (3x)—P(x).
Similarly, we can easily verified that
—(3x)P(x) = (Vx)—P(x).

Remark: To negate a statement that involves the quantifiers ¥ and 3, change each ¥ to 3, change each

Jto ¥, and negate the open statement.



Example 1.15:

LetU = R.

A —(@x)(x < x?) = (Vx)=(x < x?)
= (Vx)(x = x?).
b. =(Vx)(4x+1=0)=3x)-(4x+1=0)
= (@Ax)(4x+1+#0).
Given propositions containing quantifiers we can form a compound proposition by joining them with

connectives in the same way we form a compound proposition without quantifiers. For example, if we
have (Vx)P(x) and (3x)Q(x) we can form (Vx)P(x) & (3x)Q(x).

Consider the following statements involving quantifiers. lllustrations of these along with translations
appear below.

a. All rationals are reals. (V) (Q(x) = R(x)).

b. No rationals are reals. (V) (Q(x) = —R(x)).

c. Some rationals are reals. (Ax)(Q(x) AR(x)).

d. Some rationals are not reals. (@A) (Q(x) A =R(x)).
Example 1.16:

Let U = The set of integers.
Let P(x): x is a prime number.
Q(x): x is an even number.
R(x): x is an odd number.
Then

a. (3x)[P(x) = Q(x)]is T; since there is an x, say 2, such that P(2) = Q(2)isT.

b. (Vx)[P(x) = Q(x)]is F. As a counterexample take 7. Then P(7) is T and Q(7) is F.
Hence P(7) = Q(7).

c. (Vx)[R(x) AP(x)]IisF.

d. (VX)[(R(x) AP(x)) = Q(x)]IsF.

Quantifiers Occurring in Combinations

So far, we have only considered cases in which universal and existential quantifiers appear simply.
However, if we consider cases in which universal and existential quantifiers occur in combination, we
are lead to essentially new logical structures. The following are the simplest forms of combinations:

1L (vx)(Vy)P(x,y)



“for all x and for all y the relation P(x, y) holds”;

2. (30)3y)P(x,y)
“there is an x and there is a y for which P(x, y) holds”;

3. (vx)@y)P(x,y)
“for every x there is a y such that P(x, y) holds”;

4. Fx)(Vy)P(x,y)
“there is an x which stands to every y in the relation P(x,y).”

Example 1.17:
Let U = The set of integers.
Let P(x,y):x + y = 5.

a. (3x) (3y) P(x,y) means that there is an integer x and there is an integer y such that
x + y = 5. This statement is true when x = 4 and y = 1, since 4 + 1 = 5.
Therefore, the statement (3x) (3y) P(x,y) is always true for this universe. There are
other choices of x and y for which it would be true, but the symbolic statement merely
says that there is at least one choice for x and y which will make the statement true, and
we have demonstrated one such choice.

b.  (3x) (Vy) P(x,y) means that there is an integer x, such that for every y, x, + y = 5. This'is
false since no fixed value of x, will make this true for all y in the universe; e.g. if x, = 1, then
1 + y = 5isfalse for some y.

c. (vx) (3y) P(x,y) means that for every integer x, there is an integer y such that

x +y = 5. Letx = a,theny = 5 — a will always be an integer, so this is a true statement.

d.  (vx) (Vy) P(x,y) means that for every integer x and for every integer y, x + y = 5. This is
false, forifx = 2andy =7, weget2+7 =9 #5.

Example 1.18:

a. Consider the statement
For every two real numbers x and y,x2 + y2? > 0.
If we let
P(x,y):x>+y%2=>0
where the domain of both x and y is [, the statement can be expressed as



(Vx € R)(Vy € R)P(x,y) or as (Vx € R)(Vy € R)(x? + y? > 0).

Since x? > 0 and y2 > 0 for all real numbers x and v, it follows that x2 + y2 > 0 and so P(x, y) is true
for all real numbers x and y. Thus the quantified statement is true.

b. Consider the open statement
PO,y)lx—1]+|y—2| <2
where the domain of the variable x is the set E of even integers and the domain of the variable y is the
set O of odd integers. Then the quantified statement

(Ax € E)(3y € 0)P(x,y)
can be expressed in words as
There exist an even integer x and an odd integer y such that [x — 1| + |y — 2| < 2.
Since P(2,3):1 + 1 < 2is true, the quantified statement is true.

c. Consider the open statement

P(x,y)ixy =1
where the domain of both x and y is the set Q" of positive rational numbers. Then the quantified
statement

(vx € Q")(3y € QMP(x,y)
can be expressed in words as
For every positive rational number x, there exists a positive rational number y such that xy = 1.
It turns out that the quantified statement is true. If we replace Q* by IE, then we have
(Vx e R)(3y € R)P(x,y) .
Since x = 0 and for every real number y,xy = 0 # 1, (Vx € R)(3y € R)P(x, y) is false.

d. Consider the open statement
P(x,y):xyis odd

where the domain of both x and y is the set M of natural numbers. Then the quantified statement
(3x e N)(Vy € N)P(x,y),
expressed in words, is

There exists a natural number x such that for every natural numbers y, xy is odd. The statement is false.



In general, from the meaning of the universal quantifier it follows that in an expression (Vx)(Vy)P(x,y)
the two universal quantifiers may be interchanged without altering the sense of the sentence. This also
holds for the existential quantifies in an expression such as (3x) (3y)P(x, y).

In the statement (Vx)(3y)P(x,y) , the choice of y is allowed to depend on x - the y that works for one
x need not work for another x. On the other hand, in the statement (3y)(Vx)P(x,y), the y must work
for all x, i.e., y is independent of x. For example, the expression (Vx)(3y)(x < y), where x and y are
variables referring to the domain of real numbers, constitutes a true proposition, namely, “For every
number x, there is a number y, such that x is less that y,” i.e., “given any number, there is a greater
number.” However, if the order of the symbol (Vx) and (3y) is changed, in this case, we obtain:
(Ay)(Vx)(x < y), which is a false proposition, namely, “There is a number which is greater than every
number.” By transposing (Vx) and (3y), therefore, we get a different statement.

The logical situation here is:

@EY)(Vx)P(x,y) = (VX)(3Fy)P(x, ).

Finally, we conclude this section with the remark that there are no mechanical rules for translating
sentences from English into the logical notation which has been introduced. In every case one must first
decide on the meaning of the English sentence and then attempt to convey that same meaning in terms
of predicates, quantifiers, and, possibly, individual constants.

Exercises

1. In each of the following, two open statements P(x,y) and Q(x, y) are given, where the
domain of both x and y is Z. Determine the truth value of P(x,y) = Q(x, y) for the
given values of x and y.

a. P(x,y):x?—y?2=0.and Q(x,y):x =y. (x,y) € {(1,—-1),(3,4), (5,5)}.
b. P(x,y): x| =lyl.and Q(x, y):x = y. (x,¥) € {(1,2), (2,-2), (6,6)}.
c. P(x,y):x*+y?=1.andQ(x,y):x+y=1.

(x,¥) € {(1,-1),(=3,4), (0,~1), (1,0)}.

2. Let O denote the set of odd integers and let P(x):x? + 1 is even, and Q(x): x? is even.
be open statements over the domain 0. State (Vx € O)P(x) and (3y € 0)Q(x) in words.

3. State the negation of the following quantified statements.

a. For every rational number r, the number% is rational.
b. There exists a rational number r such that 72 = 2.
4. Let P(n): ? IS an integer. be an open sentence over the domain Z. Determine, with

explanations, whether the following statements are true or false:
a. (VneZ)P(n).



b.

(An e Z)P(n).

5. Determine the truth value of the following statements.

a.
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(3x € R)(x? —x = 0).
(VxeN)(x+1=2).
(Vx € R)(Vx2 = x).

(3x € Q)(3x% —27 = 0).
AxeR)FyeR)(x+y+3=28).
Ax e R)3y € R)(x% +y2 =9).
(Vx e R)Ay e R)(x +y = 5).
AxeR)(VyeR)(x+y =15)

6. Con5|der the quantified statement

Foreveryx € Aandy € A, xy — 2 is prime.

where the domain of the variables x and y is A = {3,5,11}.
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Express this quantified statement in symbols.

Is the quantified statement in (a) true or false? Explain.

Express the negation of the quantified statement in (a) in symbols.
Is the negation of the quantified in (a) true or false? Explain.

7. Consider the open statement P (x, y):g < 1. where the domain of x is A = {2,3,5} and the
domainof y is B = {2,4,6}.

a.
b.
Consider the open statement P(x,y): x —y < 0. where the domain of x is A = {3,5,8}

8.

State the quantified statement (Vx € A)(3y € B)P(x,y) in words.
Show quantified statement in (a) is true.

and the domain of y is B = {3,6,10}.

a.
b.

State the quantified statement (3y € B)(Vx € A)P(x,y) in words.
Show quantified statement in (a) is true.

1. 3. Argument and Validity

Section objectives:

After completing this section, students will be able to:-

v’ Define argument (or logical deduction).

v Identify hypothesis and conclusion of a given argument.

v' Determine the validity of an argument using a truth table.

v" Determine the validity of an argument using rules of inferences.



Definition 1.7: An argument (logical deduction) is an assertion that a given set of statements
P1,P2, D3, ---, Pn, Called hypotheses or premises, yield another statement Q, called the conclusion. Such

a logical deduction is denoted by:
P1,D2,P3, -, Pn F QoOF
P1

|)

Pn

Q

Example 1.19: Consider the following argument:

If you study hard, then you will pass the exam.
You did not pass the exam.
Therefore, you did not study hard.
Let p: You study hard.
q: You will pass the exam.
The argument form can be written as:

p=yq
9

—P

When is an argument form accepted to be correct? In normal usage, we use an argument in order to
demonstrate that a certain conclusion follows from known premises. Therefore, we shall require that
under any assignment of truth values to the statements appearing, if the premises became all true, then
the conclusion must also become true. Hence, we state the following definition.

Definition 1.8: An argument form p;, P2, P3, ---,Pn F Q is said to be valid if Q is true whenever all the

premises p;, Pz, P3, ---, Py, are true; otherwise it is invalid.

Example 1.20: Investigate the validity of the following argument:

a.  p=>0q-ql-—p
b. p=>q-q=r|-p
c. Ifitrains, crops will be good. It did not rain. Therefore, crops were not good.



Solution: First we construct a truth table for the statements appearing in the argument forms.

a.
p q |—p | —q p=4q
T T | F | F T
T F F T F
F T T | F T
F F T T T

The premises p = q and —q are true simultaneously in row 4 only. Since in this case —p is also true, the
argument is valid.

b.
p q r|\—-q | p=q | q=r1
T T T | F T T
T T F | F T T
T F T T F T
T F F | T F F
F T T | F T T
F T F | F T T
F F T T T T
F F | F| T T F

The 1%, 2™, 5" 6™ and 7" rows are those in which all the premises take value T. In the 5", 6" and 7"

rows however the conclusion takes value F. Hence, the argument form is invalid.

c. Letp:Itrains.
q: Crops are good.
—p: It did not rain.

—q: Crops were not good.

The argument formisp = q,—p F—q



Now we can use truth table to test validity as follows:

p q |—p | 9 p=q

T T F F T
T F F T F
F T T F T
F F T T T

The premises p = q and —p are true simultaneously in row 4 only. Since in this case —q is also true, the
argument is valid.

Remark:

1. Whatis important in validity is the form of the argument rather than the meaning or content of
the statements involved.

2. The argument form py, P32, P3, ---, Py F Q is valid iff the statement
(p1 Ap2 Aps A ... AP, ) = Q is atautology.

Rules of inferences

Below we list certain valid deductions called rules of inferences.

1. Modes Ponens
p

r=q
q

2. Modes Tollens

3. Principle of Syllogism
p=4q

q=r




10.

p=r

Principle of Adjunction

a. p
q
PAq
b. _q
pVq

Principle of Detachment
bAq

b.q

Modes Tollendo Ponens
—-p

bVgq
q

Modes Ponendo Tollens
(A q)

B /—
—q

Constructive Dilemma
= A([T=25)

pVvr
qVvs

Principle of Equivalence
p=4q

S

q

Principle of Conditionalization
b

q=Ppr




Formal proof of validity of an argument

Definition 1.9: A formal proof of a conclusion Q given hypotheses p;,p,, D3, ..., Pn is @ sequence of
stapes, each of which applies some inference rule to hypotheses or previously proven statements
(antecedent) to yield a new true statement (the consequent).

A formal proof of validity is given by writing on the premises and the statements which follows from
them in a single column, and setting off in another column, to the right of each statement, its
justification. It is convenient to list all the premises first.

Example 1.21: Show that p = —q, g F—p is valid.

Solution:
1. qistrue premise
2. p = —q istrue premise
3. g = —p istrue contrapositive of (2)
4, —p istrue Modes Ponens using (1) and (3)

Example 1.22: Show that the hypotheses

It is not sunny this afternoon and it is colder than yesterday.
If we go swimming, then it is sunny.
If we do not go swimming, then we will take a canoe trip.
If we take a canoe trip, then we will be home by sunset.

Lead to the conclusion:
We will be home by sunset.

Let p: It is sunny this afternoon.

q: It is colder than yesterday.

r: We go swimming.

s: We take a canoe trip.

t: We will be home by sunset.

Then




1. —=pAgq hypothesis

2. —p simplification using (1)

3. r=p hypothesis

4. —r Modus Tollens using (2) and (3)

5, - r=s hypothesis

6. s Modus Ponens using (4) and (5)

7. s=t hypothesis

8. t Modus Ponens using (6) and (7)
Exercises

1. Use the truth table method to show that the following argument forms are valid.
i. —p=-q,q Fp.
ii. p=-ppr=gqt-r.
iii. p=q,—-r=—q —r = —p.
V. =rV—=s,(—s=p)=r F—p.
V. p=q,—p=71,7T=St-q=Ss5.
2. For the following argument given a, b and c below:
I. Identify the premises.
Ii. Write argument forms.
iii. Check the validity.

a.  If he studies medicine, he will get a good job. If he gets a good job, he
will get a good wage. He did not get a good wage. Therefore, he did not
study medicine.

b. If the team is late, then it cannot play the game. If the referee is here,
then the team is can play the game. The team is late. Therefore, the
referee is not here.

c. If the professor offers chocolate for an answer, you answer the
professor’s question. The professor offers chocolate for an answer.
Therefore, you answer the professor’s question

3. Give formal proof to show that the following argument forms are valid.
a. —-p = —q,q +p.

p = —q,p, 1" =q k.

p=>q,—r=—q F—r= —p.

—rA=S, (=S =p) =71 F-p.

p=,—-p=rr=st-q=s.

—-pVqr=nprtq.

—pA—=q,(@QVTr)= p F-r.

p=(qVr),-rptq.
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I. —-q = —p,r = p,—q FT.

4. Prove the following are valid arguments by giving formal proof.
a. If the rain does not come, the crops are ruined and the people will starve. The crops are
not ruined or the people will not starve. Therefore, the rain comes.
b. If the team is late, then it cannot play the game. If the referee is here then the team can
play the game. The team is late. Therefore, the referee is not here.

1.4. Set theory

In this section, we study some part of set theory especially description of sets, Venn diagrams
and operations of sets.
Section objectives:

After completing this section, students will be able to:-

v’ Explain the concept of set.

v' Describe sets in different ways.

v’ ldentify operations on sets.

v llustrate sets using Venn diagrams.

1.4.1. The concept of a set

The term set is an undefined term, just as a point and a line are undefined terms in geometry. However,
the concept of a set permeates every aspect of mathematics. Set theory underlies the language and
concepts of modern mathematics. The term set refers to a well-defined collection of objects that share a
certain property or certain properties. The term “well-defined” here means that the set is described in
such a way that one can decide whether or not a given object belongs in the set. If A is a set, then the
objects of the collection A are called the elements or members of the set A. If x is an element of the set
A, we write x € A. If x is not an element of the set A, we write x & A.

As a convention, we use capital letters to denote the names of sets and lowercase letters for elements
of a set.

Note that for each objects x and each set A, exactly one of x €4 or x £A but not both must be true.
1.4.2. Description of sets
Sets are described or characterized by one of the following four different ways.

1. Verbal Method



In this method, an ordinary English statement with minimum mathematical symbolization of
the property of the elements is used to describe a set. Actually, the statement could be in any
language.
Example 1.23:
a. The set of counting numbers less than ten.
b. The set of letters in the word “Addis Ababa.”
c. The set of all countries in Africa.
2. Roster/Complete Listing Method
If the elements of a set can all be listed, we list them all between a pair of braces without
repetition separating by commas, and without concern about the order of their appearance.
Such a method of describing a set is called the roster/complete listing method.

Examples 1.24:

a. The set of vowels in English alphabet may also be described as {a, ¢, i, 0, u}.
b. The set of positive factors of 24 is also described as {1, 2, 3,4, 6, 8,12, 24}.

Remark:

i. We agree on the convention that the order of writing the elements in the list is
immaterial. As a result the sets {a, b, c},{b, c,a} and {c, a, b} contain the same elements,
namely a, b and c.

ii. Theset{a,a,b,b,b} contains just two distinct elements; namely a and b, hence it is the
same set as {a, b}. We list distinct elements without repetition.

Example 1.25:

a.LetA = {a, b,{c}}. Elements of A are a, b and {c}.

Notice that ¢ and {c} are different objects. Here {c} € A but ¢ & A.

b. Let B = {{a}}. The only element of B is {a}. Buta & B.

c. LetC = {a,b,{a, b} {a,{a}}}. Then C has four elements.

The readers are invited to write down all the elements of C.
3. Partial Listing Method

In many occasions, the number of elements of a set may be too large to list them all; and in
other occasions there may not be an end to the list. In such cases we look for a common
property of the elements and describe the set by partially listing the elements. More precisely,
if the common property is simple that it can easily be identified from a list of the first few
elements, then with in a pair of braces, we list these few elements followed (or preceded) by
exactly three dotes and possibly by one last element. The following are such instances of
describing sets by partial listing method.

Example 1.26:



a. The set of all counting numbersisN = {1,2,3,4,...}.
b. The set of non-positive integers is {..., =4, —3,—2,—1, 0}.
c. The set of multiples of 5is {...,—15,-10,-5,0 5,10, 15, ... }.
d. The set of odd integers less than 100 is {...,—3,—1,1,3,5, ... 99}.
4.Set-builder Method
When all the elements satisfy a common property P, we express the situation as an open
proposition P(x) and describe the set using a method called the Set-builder Method as
follows:
A= {x|P(x)}orA = {x: P(x)}
We read it as “A is equal to the set of all x’s such that P(x) is true.” Here the bar “| * and the colon “:”
mean “such that.” Notice that the letter x is only a place holder and can be replaced throughout by
other letters. So, for a property P, the set {x | P(x)},{t | P(t)} and {y |P(y)} are all the same set.

Example 1.27: The following sets are described using the set-builder method.

A = {x | x is a vowel in the English alphabet}.
B = {t | tis an even integer}.
C = {n | nis a natural number and 2n - 15 is negative}.
D={yly*-y-6 =0}
e. E={x|xisanintegerandx- 1 < 0 = x2- 4 > 0}.
Exercise: Express each of the above by using either the complete or the partial listing method.
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Definition 1.10: The set which has no element is called the empty (or null) set and is denoted by ¢ or {}.

Example 1.28: The set of x € R such that x? + 1 = 0 is an empty set.

Definition 1.11: A set is finite if it has limited number of elements and it is called infinite if it has unlimited number
of elements.

Relationships between two sets

Definition 1.12: Set B is said to be a subset of set A (or is contained in A), denoted by B C A, if every
element of B is an element of 4, i.e.,

(Vx)(x e B= x € A).
It follows from the definition that set B is not a subset of set A if at least one element of B is not an
elementofA.i.e, BZ€ A< (3x)(x € B = x & A). In such cases we write B £ AorA 2 B.

Remarks: Foranyset 4,¢p € Aand A C A.




Example 1.29:

a. IfA = {a,b},B = {a,b,c}and C = {a,b,d},then A < Band A < C.On the
other hand, it is clear that: B £ A, B € C and C & B.
b. If S ={x|xisamultipleof 6} and T = {x | x is even integer}, then S € T since
every multiple of 6 is even. However, 2 € T while 2 ¢ S. Thus T £ S.
c. IfA = {a,{b}} then {a} € Aand {{b}} € A. On the other hand, since b & 4,
{b} € A,and {a, b} £ A.

Definition 1.13:

a. Sets A and B are said to be equal if they contain exactly the same elements. In this case, we write
A = B.Thatis, (Vx)(x € B x € A).

b. Sets A and B are said to be equivalent if and only if there is a one to one correspondence among
their elements. In this case, we write A < B.

Example 1.30:

a. Thesets{1,2,3},{2,1,3},{1,3,2} are all equal.
b. {x|xis a counting number} = {x | x is a positive integer}

Definition 1.14: Set A is said to be a proper subset of set B if every element of A is also an element of B,
but B has at least one element that is not in A. In this case, we write A € B. We also say B is a proper
super set of A, and write B D A. It is clear that

AcB & [(Vx)(xeEA=x€B)A(A#B)].

Remark: Some authors do not use the symbol =. Instead they use the symbol < for both subset and
proper subset. In this material, we prefer to use the notations commonly used in high school
mathematics, and we continue using = and < differently, namely for subset and proper subset,
respectively.

Definition 1.15: Let A be a set. The power set of A, dented by P (A), is the set whose elements are all
subsets of A. That is,

P(A) = {B:B € A}.

Note: If a set A4 is finite with n elements, then

a. The number of subsets of A is 2™ and
b. The number proper subsets of 4 is 2™ — 1.




Example 1.31: Let A= {x,y,z}. As noted before, ¢ and A are subset of A. Moreover,
{x},{y}, {2z}, {x, v}, {x, z} and {y, z} are also subsets of A. Therefore,

P(A) = {¢, {x}, (¥} {z}, {x, y}, {x, 2}, {y, 2}, A}.

Frequently it is necessary to limit the topic of discussion to elements of a certain fixed set and regard all
sets under consideration as a subset of this fixed set. We call this set the universal set or the universe
and denoted by U.

Exercises

1. Which of the following are sets?

C.
d.

@®

f.

g.

1,2,3
{1,2},3
{{1}.2}3
{1.{2}.3}
{1,2,a,b}.

2. Which of the following sets can be described in complete listing, partial listing and/or
set-builder methods? Describe each set by at least one of the three methods.

The set of the first 10 letters in the English alphabet.

The set of all countries in the world.

The set of students of Addis Ababa University in the 2018/2019 academic year.
The set of positive multiples of 5.

The set of all horses with six legs.

3. Write each of the following sets by listing its elements within braces.

C.

d.

@

f.

g.

A={xEL—-4<x<4)
B ={x €Z:x? <5}
C ={x € N:x3 <5}
D={x€eR:x?—x=0}
E={xeR:x?+1=0}

4. Let A be the set of positive even integers less than 15. Find the truth value of each of the
following.

a.
b.
C.

Sa ™o o

15eA
-16 €A
pEA
12c A
{2,8,14} €A
{234} A
{24} €A
pcA



i. {246} c A

5. Find the truth value of each of the following and justify your conclusion.

a <o

b. {1,2} € {1,2}
C. ¢ € AforanysetA
d. {¢} < A, forany set A
e. 57<{5,6,7,8}
f. ¢e{{e}}
g. Foranyset4,Ac A
h. {¢} =¢
6. For each of the following set, find its power set.
a. {ab}
b. {1,1.5}
c. {a b}
d. {a,0.5,x}

7. How many subsets and proper subsets do the sets that contain exactly 1, 2, 3,4, 8, 10 and
20 elements have?
8. Isthere a set A with exactly the following indicated property?
a. Only one subset
Only one proper subset
Exactly 3 proper subsets
Exactly 4 subsets
Exactly 6 proper subsets
Exactly 30 subsets
Exactly 14 proper subsets
Exactly 15 proper subsets
9. How many elements does A contain if it has:
a. 64 subsets?
b. 31 proper subsets?
c. No proper subset?
d. 255 proper subsets?
10. Find the truth value of each of the following.
¢ € P(¢)
b. For anyset A,¢p € P(A)
c. Foranyset A,A € P(A)
d. ForanysetA,A c P(A).
11. For any three sets 4, B and C, prove that:

Se@ e a0 o

&



a. IfAc Band B < C,then4 c C.
b. IfAcBandB c C,then A c C.

1.4.3. Set Operations and Venn diagrams

Given two subsets A and B of a universal set U, new sets can be formed using A and B in many ways,
such as taking common elements or non-common elements, and putting everything together. Such
processes of forming new sets are called set operations. In this section, three most important
operations, namely union, intersection and complement are discussed.

Definition 1.16: The union of two sets A and B, denoted by A U B, is the set of all elements that are
eitherin A or in B (or in both sets). That is,

AUB ={x:(x€A)V (x € B)}.

As easily seen the union operator “1J” in the theory of set is the counterpart of the logical operator “V”.

Definition 1.17: The intersection of two sets A and B, denoted by A N B, is the set of all elements that
arein A and B. That is,

ANB ={x:(x € A) A (x € B)}.

As suggested by definition 1.17, the intersection operator “I1” in the theory of sets is the counterpart of

the logical operator “/”.
Note: - Two sets A and B are said to be disjoint setsif AN B = ¢.
Example 1.32:

a. LetA = {0,1,3,5,6}and B = {1,2,3,4,6,7}. Then,
AUB = {0,1,2,3,4,5,6,7}and AN B = {1,3,6}.
b. Let A =The set of positive even integers, and
B = The set of positive multiples of 3. Then,
A U B = {x: x is a positive intger that is either even or a multiple of 3}
= {2,3,4,6,8,9,10,12,14, 15, 16, ...}
A NB = {x| xis apositive integer that is both even and multiple of 3}
= {6,12,18,24, ...}
= {x | x is a positive multiple of 6.}

Definition 1.18: The difference between two sets A and B, denoted by A — B, is the of all elements in A




and not in B; this set is also called the relative complement of B with respect to A. Symbolically,

A—B={x:x€ ANx & B}.

Note: A - B is sometimes denoted by A\B. A - B and A\B are used interchangeably.
Example 1.33: If = {1,3,5}, B = {1,2},then A — B ={3,5}and B — A = {2}.

Note: The above example shows that, in general, A — B are B — A disjoint.

Definition 1.19: Let A be a subset of a universal set U. The absolute complement (or simply
complement) of A, denoted by A’ (or A°or A ), is defined to be the set of all elements of U that are not
in A. That is,

A={xixeUNx¢gA}orxEA ©x¢&A S ~(x€A).

Notice that taking the absolute complement of A is the same as finding the relative complement of A
with respect to the universal set U. That is,

Example 1.34:

a. IfU=1{0,1,2,3,4},and if 4 = {3,4}, then 4’ = {0,1,2}.
b. LetU = {1,2,3,...,12}
A = {x | x is a positive factor of 12}
and B = {x | x is an odd integer in U}.
Then,A’= {5,7,8,9,10,11}, B’= {2,4,6,8,10,12},
(AUB)’= (8,10}, A’'UB’= {2,4,5,6, ...,12},
A’nB’= {8,10},and (A\B)’= {1,3,5,7,8,9,10,11}.
c. LetU = {a,b,c,d,e,f,g,h},A = {a,e, g, h} and
B = {b,c,e,f,h}. Then
A’= {b,c,d,f},B’= {a,d,g}, B- A = {b,c,f},
A-B = {a,g},and (AU B)' = {d}.
Find (AN B)', A’n B’, A’V B'. Which of these are equal?

Theorem 1.1: For any two sets A and B, each of the following holds.
1. (A)’= A.

2. A’=U-A.
3. A-B = ANB".




4. (AUB)'= ANB.
5. ANB)'= A’UB'.
6. ACB< B' cA.

Now we define the symmetric difference of two sets.

Definition 1.20: The symmetric difference of two sets A and B, denoted by AAB, is the set

AAB = (A—B) U (B — A).

Example 1.35: Let U = {1,2,3, ...,10} be the universal set, A = {2,4,6,8,9,10} and B = {3,5,7,9}. Then
B—A={357}and A—B ={2,4,6,8,10}. Thus AAB = {2,3,4,5,6,7,8,10}.

Theorem 1.2: For any three sets 4, B and C, each of the following holds.

a. AUB = BUA. (Y is commutative)
b. AnB = BnA. (N is commutative)
c. (AuB)UC = AU (BUDO). (Y is associative)
d (AnB)NC = An(BnC). (N is associative)
e. AU(BNC) = (AUB)N(AUC). (Y is distributive over )
f. An(BUC) = (ANB)U(ANC). (N is distributive over U)
Let us prove property “e” formally.
x€EAUBNC)S (x€EAVXEBNC) (definition of U)
S x€eEAV(XEBAXE(D) (definition of M)
S (xeEAVxEB)A(x€EAVXECD) (V' is distributive over /)
S xeAUB)A(xeA UC) (definition of W)
S x€e(AUB)N(AUC) (definition of 1)

Therefore, we have AU(BNC) =(AUB)N (AU 0).

The readers are invited to prove the rest part of theorem (1.2).

Venn diagrams

While working with sets, it is helpful to use diagrams, called Venn diagrams, to illustrate the
relationships involved. A Venn diagram is a schematic or pictorial representative of the sets involved in
the discussion. Usually sets are represented as interlocking circles, each of which is enclosed in a
rectangle, which represents the universal set U.




(O

In some occasions, we list the elements of set A inside the closed curve representing A.
Example 1.36:

a. IfU = {1,2,3,4,5,6,7}and A = {2,4, 6}, then a Venn diagram representation
of these two sets looks like the following.

U

b. LetU = {x|xisa positive integer less than 13}
A = {x|x € Uandx is even}
B = {x|x € U and x is a multiple of 3}.
A Venn diagram representation of these sets is given below.

U




Example 1.37: Let U = The set of one digits numbers
A =The set of one digits even numbers
B = The set of positive prime numbers less than 10

We illustrate the sets using a Venn diagram as follows.

A B U
0 4 1
6 3 9

a. lllustrate A N B by a Venn diagram

>
w
c

AN B: The shaded portion

b. lllustrate A’ by a Venn diagram

7 U

A\

A’ : The shaded portion

c. lllustrate A\B by using a Venn diagram



A\ B: The shaded portion

Now we illustrate intersections and unions of sets by Venn diagram.

Cases ShadedisAU B Shaded AN B

Only some common A B A

elements

®

No common
element

ANB=2

Exercises
1. fBS A, AnB ={1,45}and AU B = {1,2,3,4,5,6}, find B.
2. LetA ={24,6,7,89},
B = {1,3,5,6,10} and
C={x:3x+6=00r2x+ 6 =0} Find




a. AUB.
b. IsS(AUB)UC =AU (BUC()?
3. Suppose U = The set of one digit numbers and
A ={x:x is an even natural number less than or equal to 9}
Describe each of the sets by complete listing method:

A
ANA'.
AUA'.
A"
¢—U.
¢’
g. U

4. Suppose U = The set of one digit numbers and

A ={x:x is an even natural number less than or equal to 9}

Describe each of the sets by complete listing method:

- ® o0 T

h. A
i. AnA.
j. AUA.
k. (4
. ¢—U.
m. ¢’
n. U

5. Use Venn diagram to illustrate the following statements:

a.(AuB) =A'nB'

b.(ANB)' =A"UB'.

c.If A € B, then A\B # ¢.

dAUA =U.
6. LetA ={1,23,4},B ={5,7,89}and C = {6,7,8}. Then show that (A\B)\C = A\(B\C).
7. Perform each of the following operations.
L on{$)
b. {¢,{¢}} - ({#}}
{9.{0}} - {4}

d {{e}}}- ¢
8. LetU = {2,3,6,8,9,11,13,15},

A = {x|x is a positive prime factor of 66}
B ={ x € U| x is composite number } and C = {x € U| x - 5 € U}. Then find each of
the following.

<]

g



ANB,(AUB)NC,(A- BYUC,(A- B)- C,A- (B- C),(A- C)- (B- A),A'nB'NC

9. LetAUB = {a,b,c,d,e,x,y,z}andANB = {b,e,y}.
a. IfB-A = {x,z},thenA =
b. IfA- B = ¢,thenB =
c. If B ={bey,z}thenAd-B =
10.LetU = {1,2,...,10},A ={3,5,6,8,10},B = {1,2,4,5,8,9},
C =1{1,2,3,4,56,8and D = {2,3,5,7,8,9}. Verify each of the following.
a. (AuB)UC = AU (BUDC).
b. AN(BUCUD) = (ANB)U(ANC)U (AND).
c. AnBNCND)'=A’UB’UC’UD".
d C-D =CnD"
e. AnN(BNC)’= (A- B)U(A- ().
11. Depending on question No. 10 find.
a. AAB.
b. CAD.
c. (AAC)AD.
d. (AUB)\ (AAB).
12. For any two subsets A and B of a universal set U, prove that:
a. AAB = BAA.
b. AAB = (AUB)- (ANB).
c. AAgp= A
d AAA = ¢.
13. Draw an appropriate Venn diagram to depict each of the following sets.
a. U = The set of high school students in Addis Ababa.
A = The set of female high school students in Addis Ababa.
B = The set of high school anti-AIDS club member students in Addis Ababa.
C = The set of high school Nature Club member students in Addis Ababa.
b. U = The set of integers.
A = The set of even integers.
B = The set of odd integers.
C = The set of multiples of 3.
D = The set of prime numbers.




Chapter 2

The Real and Complex Number Systems

In everyday life, knowingly or unknowingly, we are doing with numbers. Therefore, it will be nice if we
get familiarized with numbers. Whatever course (which needs the concept of mathematics) we take, we
face with the concept of numbers directly or indirectly. For this purpose, numbers and their basic

properties will be introduced under this chapter.

Objective of the Chapter
At the end of this chapter, students will be able to:

- check the closure property of a given set of numbers on some operations

- determine the GCF and LCM of natural numbers

- apply the principle of mathematical induction to prove different mathematical formulae
- determine whether a given real number is rational number or not

- plot complex numbers on the complex plane

- convert a complex number from rectangular form to polar form and vice-versa

- extract roots of complex numbers
2.1 The real number System

2.1.1 The set of natural numbers

The history of numbers indicated that the first set of numbers used by the ancient human beings for

counting purpose was the set of natural (counting) numbers.

Definition 2.1.1

The set of natural numbers is denoted by N and is described as N ={ 1,2,3... }

2.1.1.1 Operations on the set of natural numbers



i) Addition (+)

If two natural numbers a & b are added using the operation “+”, then the sum a+b is also a natural
number. If the sum of the two natural numbers a & b is denoted by ¢, then we can write the operation
as: ¢ = a+b, where cis called the sum and a & b are called terms.

Example: 3+8 = 11, here 11 is the sum whereas 3 & 8 are terms.
ii) Multiplication (x)

If two natural numbers a & b are multiplied using the operation “x”, then the product axb is also a
natural number. If the product of the two natural numbers a & b is denoted by c, then we can write the
operation as: ¢ = axb, where c is called the product and a & b are called factors.

Example 2.1.3: 3x4 =12, here 12 is the product whereas 3 & 4 are factors.

Properties of addition and multiplication on the set of natural numbers

i. For any two natural numbers a & b, the sum a+b is also a natural number. For instance in the

above example, 3 and 8 are natural numbers, their sum 11 is also a natural number. In general, we
say that the set of natural numbers is closed under addition.
ii. For any two natural numbersa & b,a+b=>b +a.

Example 2.1.1: 3+8 = 8+3 = 11. In general, we say that addition is commutative on the set of natural
numbers.

iii. For any three natural numbers a, b & ¢, (a+b)+c = a +(b+c).

Example 2.1.2: (3+8)+6 = 3+(8+6) = 17. In general, we say that addition is associative on the set of
natural numbers.

iV. For any two natural numbers a & b, the product ax b is also a natural number. For instance in the

above example, 3 and 4 are natural numbers, their product 12 is also a natural number. In general, we
say that the set of natural numbers is closed under multiplication.

v. For any two natural numbers a & b, axb = bxa.

Example 2.1.4: 3x4 = 4x3 = 12. In general, we say that multiplication is commutative on the set of
natural numbers.

vi. For any three natural numbers a, b & ¢, (axb) xc=ax (bxc).



Example 2.1.5: (2x4) x5 =2x (4x5) =40. In general, we say that multiplication is associative on the set
of natural numbers.

vi. For any natural number g, it holds thatax1=1xa=a.

Example 2.1.6: 6x1 = 1x6 = 6. In general, we say that multiplication has an identity element on the set
of natural numbers and 1 is the identity element.

vii. For any three natural numbers g, b & ¢, ax (b+c) = (ax b)+(axc).

Example 2.1.7: 3x(5+7) = (3%x5)+ (3x7) = 36. In general, we say that multiplication is distributive over
addition on the set of natural numbers.

Note: Consider two numbers a and b, we say a is greater than b denoted by a> b if a — b is positive.

2.1.1.2 Order Relationin N
i) Transitive property:

For any three natural numbersa, b &c, a>b & b>c=a>c
ii) Addition property:

For any three natural numbersa, b &c, a>b=a+c>b+c
iii) Multiplication property:

For any three natural numbers a, band ¢, a >b =ac > bc
iv) Law of trichotomy

For any two natural numbersa & bwe have a>b or a<bor a=>b.

2.1.1.3 Factors of a number

Definition 2.2

If &, b, C € N suchthat ab=C, then a & b are factors (divisors) of ¢ and c is called product (multiple)
of a & b.

Example 2.8: Find the factors of 15.

Solution: Factors of 15 are 1, 3,5, 15. Or we can write it as: F,= { 1 3,5, 15}




Definition 2.3 A number a € N is said to be

i. Even if it is divisible by 2.
ii. Odd if it is not divisible by 2.
iii. Prime if it has only two factors (1 and itself).

iv. Composite: if it has three or more factors.

Example 2.9: 2,4,6,... areeven numbers

Example 2.10: 1, 3,5, ... are odd numbers

Example 2.11: 2,3,5,... are prime numbers

Example 2.12: 4,6, 8, 9, ... are composite numbers

Remark: 1 is neither prime nor composite.

2.1.1.5 Prime Factorization

Definition 2.4

Prime factorization of a composite number is the product of all its prime factors.

Example 2.9:

a)6=2x3 b)30=2x3x5 €)12=2x2x3=2°x3 d)8=2x2x2=2°€)180=2*x3*x5

Fundamental Theorem of Arithmetic:

Every composite number can be expressed as a product of its prime factors. This factorization is unique
except the order of the factors.




2.1.1.6 Greatest Common Factor (GCF)

Definition 2.5

The greatest common factor (GCF) of two numbers a & b is denoted by GCF (a, b) and is the greatest
number which is a factor of each of the given number.

Note: If the GCF of two numbers is 1, then the numbers are called relatively prime.

Example 2.10: Consider the two numbers 24 and 60.

Now F,, ={1234,6,8,12,24 }
and F,,={1 2,3, 4,5,6,10, 12,15, 20, 30, 60 }
Next F,, "Fy, ={1, 2,3, 4,6,12 } from which 12 is the greatest.

Therefore, GCF(24, 60) = 12.

This method of finding the GCF of two or more numbers is usually lengthy and time consuming. Hence

an alternative method (Prime factorization method) is provided as below:
Step 1: Find the prime factorization of each of the natural numbers

Step 2: Form the GCF of the given numbers as the product of every factor that appears in each of the

prime factorization but take the least number of times it appears.

Example 2.11: Consider the two numbers 24 and 60.

Stepl: 24=2°x3
60 = 2% x3x5

Step 2: The factors that appear in both cases are 2 and 3, but take the numbers with the least number of
times.

GCF (24, 60) = 22 %3 =1=2
Example 2.12: Consider the three numbers 20, 80 and 450.

Stepl: 20 =2° x5
80=2*x5
450 = 2x 3% x 52




Step 2: The factors that appear in all cases are 2 and 5, but take the numbers with the least number of
times.

GCF (20, 80, 450) = 2x5=10

2.1.1.7 Least Common Multiple (LCM)

Definition 2.6

The least common multiple (LCM) of two numbers a & b is denoted by LCM (a, b) and is the least
number which is a multiple of each of the given number.

Example 2.13: Consider the two numbers 18 and 24.

Now M, = { 18, 36, 54, 72,90, 108, 126, 144, --- }
and M,, ={ 24, 48, 72, 96,120, 144, --- }
Next M,; "M,, ={ 72, 144, ---} from which 72 is the least.

Therefore, LCM (18, 24) = 72.

This method of finding the LCM of two or more numbers is usually lengthy and time consuming. Hence

an alternative method (Prime factorization method) is provided as below:
Step 1: Find the prime factorization of each of the natural numbers

Step 2: Form the LCM of the given numbers as the product of every factor that appears in any of the

prime factorization but take the highest number of times it appears.

Example 2.14: Consider the two numbers 18 and 24.

Stepl: 18 = 2° x3?
24=2°x3

Step 2: The factors that appear in any case are 2 and 3, but take the numbers with the highest number
of times.

LCM (18, 24) = 2° x3% =72




Example 2.15: Consider the three numbers 20, 80 and 450.

Stepl: 20 =2° x5
80=2*x5
450 = 2x 3% x5?

Step 2: The factors that appear in any cases are 2, 3 and 5, but take the numbers with the highest
number of times.

LCM (20, 80, 450) = 2* x3° x5% = 3600

2.1.1.8 Well ordering Principle in the set of natural numbers

Proposition 2.7

Every non-empty subset of the set of natural numbers has smallest (least) element.

Example2.16 A={2,34,--- }c N. smallest element of A=2.

Note: The set of counting numbers including zero is called the set of whole numbers and is denoted by
wW. iew=1{0123..}

2.1.1.9 Principle of Mathematical Induction

Mathematical induction is one of the most important techniques used to prove in
mathematics. It is used to check conjectures about the outcome of processes that
occur repeatedly according to definite patterns. We will introduce the technique

with examples.



For a given assertion involving a natural number n, if

i. the assertion is true for n = 1 (usually).

ii. it is true for n = k+1, whenever it is true for n =k (k>1), then the assertion is true for every natural
number n.

The method is used to prove different propositions involving positive integers using three steps:

Stepl: Prove that T, (usuallyT,) holds true.
Step 2: Assume that T, for k=nis true.
Step 3: Show that T, is true for k = n+1.

Example 2.17 Show that 1+3+5+---+(2n—1) =n°.

Proof:

Stepl. For n=1, 1=1* whichis true.
Step2. Assume thatit is true for n=k
ie. 1+3+5+---+(2k-1)=k>.
Step3. We should show that it is true for n=k +1.
Claim:1+3+5+---+(2k =1) + (2k +1) = (k +1)?
Now 1+3+5+---+(2k —1) + (2k +1) =k* + (2k +1)
=k®+2k+1

=(k+1)* which is the required result

. Itistrue for any natural number n.

n(n+1)

Example 2.18 Show that 1+2+3+---+(n) = 5

Proof:



1(1+1)

Stepl. Forn=1, 1= which is true.

Step2. Assume that it is true for n =k

k(k+1)

—

Step3. We should show that it is true for n=k+1

ie. 1+2+3+---+(k) =

cmmu1+2+3+~~+ao+(k+n=§5i9§5i3l

va1+2+3%~+¢)+¢+D:59%59+w+n

_ k(k+1)+2(k+1)
2
_ (k+D)(k+2)

which is the required result.

- It is true for any natural number n.

Example 2.19 Show that 5" +6" <9" for n>2.

Proof:
Stepl. Forn=2, 61<81 whichistrue
Step2. Assume thatit is true for n=Kk.
ie. 5 +6" <9
Step3. We should show that itistrue for n=k +1
Claim: 5" + 6" < 9",
Now 5“* + 6" =5.5% +6.6" <6.5" +6.6*
=6(5* +6)
<9(5" +6%)
<9(9%) =9
=5 16" <9“"  which is the required format.
. It is true for any natural numbern> 2,

2.1.2 The set of Integers



As the knowledge and interest of human beings increased, it was important and obligatory to extend
the natural number system. For instance to solve the equation x+1= 0, the set of natural numbers was

not sufficient. Hence the set of integers was developed to satisfy such extended demands.

Definition 2.8

The set of integers is denoted by Z and described as Z = {...,—2, -10,1,2, }

2.1.2.1 Operations on the set of integers
i) Addition (+)

If two integers a & b are added using the operation “+”, then the sum a+b is also an integer. If the sum
of the two integers a & b is denoted by c, then we can write the operation as: ¢ = a+b, where cis called

the sum and a & b are called terms.

Example 2.20: 449 = 13, here 13 is the sum whereas 4 & 9 are terms.
ii) Subtraction (-)

For any two integers a & b, the operation of subtracting b from a, denoted by a—b is defined by
a-b=a+ (—b) . This means that subtracting b from a is equivalent to adding the additive inverse of b

toa.

Example 2.21: 7—-5=7+(-5) =2

iii) Multiplication (x)

If two integers a & b are multiplied using the operation “x”, then the product ax b is also an integer. If

the product of the two integers a & b is denoted by ¢, then we can write the operation as: ¢ = axb,

where c is called the product and a & b are called factors.
Example 2.22: 4x 7 = 28, here 28 is the product whereas 4 & 7 are factors.
Properties of addition and multiplication on the set of integers

i. For any two integers a & b, the sum a+b is also an integer. For instance in the above example, 4 and 9

are integers, their sum 13 is also an integer. In general, we say that the set of integers is closed under
addition.



ii. For any two integers a & b, a+b = b+a.

Example 2.23: 4+9 = 9+4 = 13. In general, we say that addition is commutative on the set of integers.

iii. For any three integers a, b & ¢, (a+b)+c = a+(b+c).

Example 2.24: (5+9)+8 = 5+(9+8) = 22. In general, we say that addition is associative on the set of
integers.

iv. For any integer g, it holds that g+0 = 0+a =a.

Example 2.25: 740 = 0+7 = 7. In general, we say that addition has an identity element on the set of
integers and 0 is the identity element.

v. For any integer g, it holds that a+ (—a) =—a+a=0.

Example 2.26: 4+-4 = -4+4 = 0. In general, we say that every integer a has an additive inverse denoted by
—a.
Vi. For any two integers a & b, the product ax b is also an integer. For instance in the above example, 4

and 7 are integers, their product 28 is also an integer. In general, we say that the set of integers is closed

under multiplication.

vii. For any two integersa & b, axb =bxa.

Example 2.27: 4x7 = 7x4 = 28. In general, we say that multiplication is commutative on the set of
integers.

viii. For any three integers a, b & ¢, (axb) xc=ax (bxc).

Example 2.28: (3x5) x4 =3x (5x4) =60. In general, we say that multiplication is associative on the set
of integers.

ix. For any integer a, it holds thatax1=1xa =a.

Example 2.29: 5x1 = 1x5 = 5. In general, we say that multiplication has an identity element on the set
of integers and 1 is the identity element.

x. For any three integers a, b & ¢, ax (b+c) = (ax b)+(axc).

Example 2.30: 4% (5+6) = (4x5)+ (4x6) = 44. In general, we say that multiplication is distributive over
addition on the set of integers.

2.1.2.2 Order Relationin Z

i) Transitive property: For any three integersa, b&c, a>b &b>c=a>c



ii) Addition property: For any three integersa, b&c, a>b=a+c>b+c

iii) Multiplication property: For any three integers a, b and ¢, where ¢>0, a > b =ac > bc

iV) Law of trichotomy: For any two integers a & bwe have a>b or a<bor a=b.

Exercise 2.1

1. Find an odd natural number x such that LCM (x, 40) = 1400.

2. There are between 50 and 60 number of eggs in a basket. When Loza counts by
3’s, there are 2 eggs left over. When she counts by 5’s, there are 4 left over. How

many eggs are there in the basket?

3. The GCF of two numbers is 3 and their LCM is 180. If one of the numbers is 45,

then find the second number.
4. Using Mathematical Induction, prove the following:

a) 6" —1 is divisible by 5, for n>0.
b) 2" <(n+1)!, for n>0
c) x"+y" is divisible by x+y for odd natural number n>1.

d) 2+4+6+---+2n=n(n+1)

e) 1° +2°+3% +---4+n* = n(n+DEn+1)
6
)12 +2°+3° +...4n° =M
4

1 1 1 1 n
+ + +oeet =
1x2 2x3 3x4 nin+l) n+1

g)




2.1.3 The set of rational numbers

As the knowledge and interest of human beings increased with time, it was again necessary to extend
the set of integers. For instance to solve the equation 2x+1= 0, the set of integers was not sufficient.

Hence the set of rational numbers was developed to satisfy such extended needs.

Definition 2.9

a
Any number that can be expressed in the formB, where a and b are integers and b # 0, is called a

rational number. The set of rational numbers denoted by Q is described by

Q={%:a and b are integers and b;to}.

Notes:

a
i. From the expression —, @ is called numerator and b is called denominator.

a
ii. A rational number B is said to be in lowest form if GCF (a, b) = 1.

2.1.3.1 Operations on the set of rational numbers
i) Addition (+)

If two rational numbers a/b and c/d are added using the operation “+”, then the sum defined as

ad +bc . )
= is also a rational number.

<
d  bd

a
—+
b

1 3 11
Example 2.31: — 4+ —=—
2 5 10

ii) Subtraction (-)

For any two rational numbers a/b & c/d , the operation of subtracting ¢/d from a/b, denoted by

a/b- c/disdefinedby a/b-c/d =al/b+(-c/d).




3 -1
Example 2.32: — ——=—
2 5 10

ili) Multiplication (x)

If two rational numbers a/b and c/d are multiplied using the operation “x”, then the product

a C acC
defined as — x — = — is also a rational number.

1 3 3
Example 2.33: —x—=—
2 5 10

iv) Division (+)

For any two rational numbers a/b&c/d, dividing a/bby c/d is defined by

a ¢ a d
—+—=—x—, C#0.
b d b c

1 3 15 5
Example 2.34: —+—=—Xx—=—
2 5 2 3 6

Properties of addition and multiplication on the set of rational numbers

Let a/b, c/d and e/ f be three rational numbers, then

i. The set of rational numbers is closed under addition and multiplication.

ii. Addition and multiplication are both commutative on the set of rational numbers.
iii. Addition and multiplication are both associative on the set of rational numbers.
iv. 0 is the additive identity

ie, a/lb+o=0+a/b=alb.
v. Every rational number has an additive inverse.

e, alb+ (-a/b)=—a/b+al/b =o0.



Vi. 1 is the multiplicative identity

ie, albx1=1xal/b =alb.
vii. Every non-zero rational number has a multiplicative inverse.

e, albx b/a=Dblaxalb=1

2.1.3.2 Order Relation in Q

i) Transitive property

For any three rational numbersa/b, c/d & e/ f a/b>c/d &c/d>e/f =alb>e/f.
ii) Addition property

For any three rational numbersa/b, c/d & e/ f a/b>c/d =al/b+e/f >c/d+e/f.
iii) Multiplication property

For any three rational numbersa/b, c/d, e/ f and e/ f >0

alb>c/d = (alb)(e/ f)>(c/d)(e/ ).

iV) Law of trichotomy

For any two rational numbers a/b& ¢/d we have a/b>c/d or a/b<c/d or a/b=c/d.

2.1.3.3 Decimal representation of rational numbers
A rational number % can be written in decimal form using long division.
2.1.3.3.1 Terminating decimals

Example 2.35: Express the fraction number % in decimal form.

Solution : ? =6.25



2.1.3.3.2 Non-terminating periodic decimals

Example 2.36: Express the fraction number 25 in decimal form.

Solution : % =8.333..-

Now we will see how to convert decimal numbers in to their fraction forms. In earlier mathematics
topics, we have seen that multiplying a decimal by 10 pushes the decimal point to the right by one
position and in general, multiplying a decimal by 10" pushes the decimal point to the right by n

positions. We will use this fact for the succeeding topics.

2.1.3.4 Fraction form of decimal numbers
A rational number which is written in decimal form can be converted to a fraction

form as % in lowest (simplified) form, where a and b are relatively prime.

2.1.3.4.1 Terminating decimals

Consider any terminating decimal number d. Suppose d terminates n digits after the decimal point. d
can be converted to its fraction form as below:

dodxl=dxi=dx(2
1~ Mo

)-

Example 2.37: Convert the terminating decimal 3.47 to fraction form.

2
Solution : 3.47 =3.47x 0. — 347

107~ 100

2.1.3.4.2 Non-terminating periodic decimals

Consider any non-terminating periodic decimal number d. Suppose d has k non-terminating digits and p




terminating digits after the decimal point. d can be converted to its fraction form as below:

10%P —10%

10%*P —1ok)'

d=dx1=dx%=dx(

Example 2.38: Convert the non-terminating periodic decimal 42.53_8 to fraction form.

Solution: k=1, p=2.

k+p _ k - 3 oY) _ 20
10 10 ) = 42,538 (103 10) _ 42538.38-425.38 42113

.'.d=dx1=dx}=dx(ﬁ = .
1 10" -10 10° -10 1000-10 990

Note: From the above two cases, we can conclude that both terminating decimals and non-terminating

periodic decimals are rational numbers. (Why? Justify).

2.1.3.5 Non-terminating and non-periodic decimals

Some decimal numbers are neither terminating nor non-terminating periodic. Such types of numbers

are called irrational numbers.

Example 2.39: 62.757757775....

Example 2.40: Show that \/E is an irrational number.
Proof:

Suppose\/E is a rationalnumber

= 2:%, where GCF (a,b) =1

= a’iseven
= aiseven




Putting this in (*) we get :
= 4n% = 2b°
= b’ =2n°
= b* is even
= Dbis even

=b=2m............ (***)

From (**) and (***) we get a contradiction that GCF (a, b) = 1 which implies that \/5 is not a rational

number.

Therefore, /2 is an irrational number.

2.1.4 The set of real numbers

Definition 2.10

A number is called a real number if and only if it is either a rational number or an irrational number.

The set of real numbers denoted by ‘R can be described as the union of the set of rational and irrational

numbers. i.e R ={x : x is a rational number or an irrational number}.

There is a 1-1 correspondence between the set of real numbers and the number line (For each point in

the number line, there is a corresponding real number and vice-versa).

2.1.4.1 Operations on the set of real numbers

i) Addition (+)

If two real numbers are added using the operation “+”, then the sum is also a real number.

ii) Subtraction (-)

For any two real numbers a & b, the operation of subtracting b from a, denoted by a —bis defined
bya—b=a+—-Db).

ili) Multiplication (x)




If two real numbers @ and b are multiplied using the operation “x”, then the product defined as
axb=ab is also a real number.

iv) Division (+)
. e 1
For any two real numbers a& b, dividing aby b is defined by a+b = axB, b #0.

Properties of addition and multiplication on the set of real numbers

Let a, b and C be three real numbers, then

i. The set of real numbers is closed under addition and multiplication.

ii. Addition and multiplication are commutative on the set of real numbers.
iii. Addition and multiplication are associative on the set of real numbers.
iv. 0is the additive identity

i.e, a+0=0+a = a.
v. Every real number has an additive inverse.

ie, a+(-a)=—-a+a=0.
vi. 1isthe multiplicative identity

iie., axl=1xa=a.
vii. Every non-zero real number has a multiplicative inverse.

ie, ax1lla=1/axa =1.

2.1.4.2 The real number and the number line

One of the most important properties of the real number is that it can be represented graphically by
points on a straight line. The point 0 is termed as the origin. Points to the right of 0 are called positive
real numbers and points to the left of 0 are called negative real numbers. Each point on the number line

corresponds a unique real number and vice-versa.
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Geometrically we say a is greater than b if a is located to the right of b on the number line.

2.1.4.3 Order Relation in R

i) Transitive property: For any three real numbersa, b& c,a>b &b>c = a>c.
ii) Addition property: For any three real numbersa, b& c, a>b =a+c>b+c.

ii) Multiplication property: For any three real numbersa, b, cand ¢ >0, we have

a>b — ac>bc.

iv) Law of trichotomy: For any two real numbers a& bwehave a>b or a<b or a=h.

Summary of the real number system

Real numbers

Rational Irrational
numbers o025 numbers
-z 03 2
Integers 1T
s — —l — |
T

Whole numbers

(]
MNatural
numbers

T— _—

2.1.4.4 Intervals




Let a and b be two real numbers such that a<b, then the intervals which are

subsets of R with end points a and b are denoted and defined as below:
i. (a,b)={x:a<x<b} open interval from ato b.

i. [a,b]={ x:a<x<b} closed interval from a to b.

iii. (a,b]={x:a<x<b} open-closed interval from a to b.

iv. [a,b)={x:a<x<b} closed-open interval from a to b.

2.1.4.5 Upper bounds and lower bounds

Definition 2.11

Let A be non—empty and Ac ‘R.

i. Apoint a € Ris said to be an upper bound of A iff X <a forall X € A
ii. An upper bound of A is said to be least upper bound (lub) iff it is the least of all upper bounds.
iii. A point @ € Ris said to be lower bound of Aiff X >a forall X € A

ii. A lower bound of A is said to be greatest lower bound (glb) iff it is the greatest of all lower bounds.

Example 2.41 Consider the set A=[2, 5)c .

i) lower bounds are ---, =9, -3, 0,

Here the greatest element is 2.
~ gb=2

i) upper bounds are 5, 6, 2—35 20, 99,1000---

Here the least element is 5.
.. lub =5.




Example 2.42: Consider the set A= {l} forneN.

-

i) lower bounds are ---, -3, -2, 0
Here the greatest element is 0.Thus, glb =0

Solution: A= {1,

N |~
Wl

i) upper bounds arel, 3, % 50, ---

Here the least element is 1.Thus, lub =1.

Based on the above definitions, we can define the completeness property of real numbers as below.

2.1.4.4 Completeness property of real number (R)

Completeness property of real numbers states that: Every non-empty subset of $R that has lower

bounds has glb and every non-empty subset of ‘R that has upper bounds has a lub.

Exercise 2.2

1. Express each of the following rational numbers as decimal:

3 C) 1 d)—5Z e) 2
25 7 3 77

4
a) — b

) i )

2. Write each of the following as decimal and then as a fraction:

a) three tenths b) four thousands

3. Write each of the following in meters as a fraction and then as a decimal




a)4mm b) 6cm and 4mm c¢) 56cm and 4mm

4. Classify each of the following as terminating or non-terminating periodic

5 7 69 11 5
a) — b) — c) — d) = e) —
)13 )10 )64 )60 )

5. Convert the following decimals to fractions:
a) 3.25 b) 0.314 c) 0.275

6. Determine whether the following are rational or irrational:

- 1
a) 2.75 b) 0.272727--- ) V8 -——
) ) ) NG

7. Which of the following statements are true and which of them are false?
a) The sum of any two rational numbers is rational

b) The sum of any two irrational numbers is irrational

c) The product of any two rational numbers is rational

d) The product of any two irrational numbers is irrational

11. Find two rational numbers between % and %

2.2 The set of complex numbers

The positive integers (natural numbers) were invented to count things. The negative integers were

introduced to count money when we owed more than we had. The rational numbers were invented for




measuring quantities. Since quantities like voltage, length and time can be measured using fractions,

they can be measured using the rational numbers.

The real numbers were invented for wholly mathematical reasons: it was found that there were lengths
such as the diagonal of the unit square which, in principle, couldn't be measured by the rational

numbers, instead they can be measured using real numbers.

The complex numbers were invented for purely mathematical reasons, just like the real numbers and
were intended to make things neat and tidy in solving equations. They were regarded with deep
suspicion by the more conservative folk for a century. Complex numbers are points in the plane,
together with a rule telling you how to multiply them. They are two-dimensional, whereas the real

numbers are one dimensional.

Equations of the form x? +1=0has no solution on the set of real numbers. Therefore, the set of

complex numbers permits us to solve such equations.

Definition 2.12

The set of complex numbers is denoted by C and is described by C

—{z/z2=x+iy, x, ye®R and i*=-1}.

From the exp ression z = x+1iy, xis called the real part and is denoted by Re(Z)

y is called the imaginary part and is denoted by Im(Z).

Note: If x = 0, the number is called purely imaginary and if y = 0, the number is called purely real.

Complex numbers can be defined as an order pair (x, y) of real numbers that can be interpreted as

points in the complex plane (z- plane) with coordinates x and y.

Example 2.43: Find the real & imaginary part of the following complex numbers:




a) z=3+7i
Solution : real part=3 & imaginary part=7

b) z=1-i
Solution : real part=1 & imaginary part=-1

2.2.1 Plotting complex numbers

Any complex number z = x+1iy can be drawn in the complex plane as below :

[

I 7=x+iy
represented as a vector

Y

Example 2.44: Draw the complex number z = 2+3i

Solution:

z=2+3i

Equality of Complex numbers

Two complex numbers z, =a+ib and z, =c+id areequal iff a=c & b=d.



Example 2.45 If z, =2+ix and z, =y +6i are equal, then find the value of x & y.

Solution :
X=6, y=2.

2.2.2 Operations on Complex numbers

Let z, =a+ib and z, =c+id be any two complex numbers, then

i) z,+z,=(a+c)+i(b+d)
i) z,-z,=(@-c)+i(b—d)
i) z,.z, =(a+1ib). (c+id)=a(c+id)+ib(c+id) =ac+iad +ibc —bd = (ac —bd) +i(ad + bc)
z, (a+ib)

—, z, #0.
z, (c+id)

Example 2.46

If z,=2+3i and z, =4+i,then find a) z,+z, b) z,-z, ¢) z.z, d) =
Z2
Sol:a) z,+z,=6+4i
b)z,—z,=-2+2i
C) z,.2, =(2+3i).(4+1) =8+ 21 +12i —3=5+14i
z, 243

d) L=

z, A4+i

2.2.3 Conjugate of a complex number

Definition 2.13

The conjugate of a complex number z = x+iy is denoted by 7 and is defined as Z = x-iy. It can be

represented by the point (x, -y) which is the reflection of the point (x, y) about the x-axis.




A Imaginary axis

z =x+Vy1

- Real axis

Z=x—yi

Example 2.47: Find the conjugate of the complex number z = 2+9i.

Solution :

z=2+09i
=7=2-0i

Properties of Conjugate

- - Z+1
az=z b. z+z:2x:2Re(z):2(Tj
C. z—z="2iy=2ilm(z) d. z,+2,=2,+12,

_ __ . 7
e 2,-2,=2,-1, f. z,.2,=12,.12, g. (H)==
z,” z,

proof : a)let z=x+1iy
=7=x-ly
:>;:x+iy
7=1
d) Let z, =x, +liy, &z, =X, +1y,
=z,=x-ly, &z,=% -y,
Now Z, + 1, :(X1+iy1)+(xz +iy2)=(xl+x2)+i(yl+y2):(x1+x2)—i(y1+y2)
=X —ly; +X, -1y,

=7+,




The others are left for the reader.

2.2.4 Modulus (Norm) of a complex number

Definition 2.14

The modulus of a complex number z = x+iy is a non-negative real number denoted by |z| and is defined

as |z = | X*+ y2 . Geometrically, the number |z| represents the distnce between the point (x, y) and

the origin.

(xy. V1)
-
Example 2.48: Find the modulus of the complex number z = 3 —4i.
Solution : z=3-4i
|Z| =) +(-4)* =25 =5
Properties of modulus
a. |7 :‘E‘ b. [z =22 C. [2,.2,| =z |z,
d. |2 :ﬂ €. |z, + 2| <[z +|Z,) o, triangle inequality
Z,| |z,

f. |z —z,[2[z]-[z,|




proof (a) let z=x+iy from which Z=x- iy
= [z =/x* +y? :‘E‘:w/x2+y2
2| = ‘E‘

proof (b) let z=x+iy from which sz—iy
22 2
=z  =x*+y
Now z.z = (Xx+iy).(x —iy) = X? + y?

|z|2 =22

proof () [2,.2,|" = (2,.2,)(%,.2,) = (2,.2,)(2,.2,) = 2,.2,.2,.2,

=|Zl|2'|22|2
S (AN - from (b)
3‘21-22‘ :|Zl|'|22|

2 — 2 2
proof (d) L= :L@:@:[HJ
2 22(22) |22|2 |22|
ENEA A
Z,| |z

The others are left for the reader.

2.2.5 Additive and multiplicative inverses
Let z = x+iy be a complex number, then
i) its additiveinverse denoted by (-z) is givenby: —z =—(x+iy) =—x—iy.

i) its multiplicaive inverse denotedby z™ is givenby: z™ = 1_ = 2X ;= Zly >
X+iy X +y° X +y

Example 2.49: Find the additive and the multiplicative inverse of z = 3+4i.

Solution : z =3+ 4i
i) —z=-3-4i
i) 2 1 1 3-4i 3 4

T 3+4i 3+44i3-4i 25 25



Exercise 2.3

. Verify that
a) (V2-i)-i(l-+2i)=-2i b) (2,-3)(-2,1) =(-1 8)
) (31 @3 -1 (%, %) =(2,0) d) (2+3i)%—(3i-6)=1+0i

. Show that

a) Re(iz) =—-1Im(z2) b) Im(iz) = Re(z) ¢) (z+D)? =z +2z+1

Do the following operations and simplify your answer.

142i 2-i 5 -
a5 D Cheneo) ¢ -

a)

. Locate the complex numbers z,+z, and z;-z,, as vectors where

a) 21:2i,22=§—i b) z, =(—/3,1) ,z,=(+/3,0)

C) Zl=(_3!1)! 22:(1, 4) d) Zl=a+ib,22 =a—ib

. Sketch the following set of points determined by the condition given below:

a)|z-1+il=1 b) [z+i<3 Q) |z-4i]>4

Using properties of conjugate and modulus, show that

a) z+3i=z-3i b)iz=-iz c) (2+i)? =3-4i

Show that (=1+i) =8(~1—1).

Using mathematical induction, show that (whenn=2,3,...))

N

Q) Z,+Z,++2,=2,+Z,++1, b) z,z,---2, =2, 2, - z,

Show that the equation | Z—Z, |=r which is a circle of radius r centered at z,, can be written

as | z|> —2Re(zz)+| z, |*=r?.




2.2.6 Argument (Amplitude) of a complex number

Definition 2.15

Argument of a complex number z = x+iy is the angle formed by the complex number z = x+iy with the

positive x-axis. The argument of a complex number z = x+iy is deonted by argz and is given by arg(z) =
1 y
tan—( 4 ).

The particular argument of z that lies in the range — 7z < @ < 7 is called the principal argument of z and

is dented by Argz.

Notes:i) Argze (-7, 7}
i) If 0<Argz<z, move counterclockwise direction, if not move the other direction

Example 2.50: Find the principal argument of the following complex numbers:
a) z=1+i b) z=-2+2/3i ) z=—/3-i
Sol: a) z=1+i

Argz = tan™ —tan?t() =2
9 (¥ M=

b) z=—2+23i
—tan1(2V3/ Y tan-i(— /3y = 2%
Argz = tan—( /2)_tan (—+/3) 3

c) z=—3-i
Argz = tan‘l(—}i \/§): tan‘l(}/\/g) :%

Properties of Arguments

1) Arg(z,.z,) = Argz, + Argz, i) Arg(i) = Argz, —argz,
z

2



Example 2.51: Find the principal argument of a) (1+i)(-1-i) b) ( 2+2'

)

Solution :

a) Arg (1+i)(-1-i)= Arg (1+i)+ Arg (- /Q_sy/ //

) Arg (1)< Arg (-2+2) - Ang (1-1) =37 -7 47/ <z

2.2.7 Polar form of a complex number

Definition 2.16

Let r and @ be polar coordinates of the point (x, y) of the complex number z = x+iy. Since x= r c0S 8 and

y = rsin @, then the complex number can be written as: z =r(cos @ +isin &) which is called polar

form, where ris modulus of zand @ is principal argument of z.

Example 2.52: Express the following complex numbers in polar form:

a) z=1+i

- . _ _ _1 _ _ - -
solution : r =+/2 and 6 = tan L= % Thus, z = \/E(cos% +1isin %).

b) z = 3—3i
solution: r=+18 and @ =tan*(-1) = —%.
Thus, z = \/ﬁ(cos—% +isin—%) = \/ﬁ(cos% —isin %).

Multiplication and division in polar forms

If z, =r(cosé, +ising,) and z, =r,(cosé, +isind,), then

a) z,.z,=1r,.r,(cos(6, +6,) +isin(6, + 6,)) b) i:i(cos(@1 —-6,)+isin(6, - 6,)).

2 rZ

Proof:




a) z,.2, =r,(cosé, +ising,).r,(cos b, +isinb,)
=1,.1,[cos g (cos 8, +isinb,) +ising,(cosb, +isinb,)]
=1,.1,[cos 6, cos 8, +icos &, sind, +isin g, cosd, —sin G, sin 6, ]
=1,.1,[cos @, cos b, —siné, sin b, +i(cos b, sin b, +sin g, cos b,)]
=1,.1,[cos(6, + 6,) +i sin(6, + 6,)]

b) 2, _ n(cos@ +isind) _r [ cosd +ising,
z, Tr,(cosé,+isin@,) r,\coséd,+ising,

n [coseﬁisinelJ cos @, —isiné,

" cosd, —ising,

r, | Cosé, +ising,
_ 1, { cos@, cos b, —icosb,sing, +isin b, cosd, +sin g, sin g,
r, cos’ 6, +sin’ 6,
_ I, (cosb, cosb, +sing, sind, +i (sin b, cos b, —cos b, sing,)
r, 1

- :—1[003(‘91 —6,) +isin(6, - 6,)]

2

Example 2.53: If z, = 6(cos”2+ isin %) and z, = 2(cosﬁ3+isin %), then find

z
a) 2,2, b) Z—l
2

Solution :

a) z,.2,=6. 2[c05(% + %) +i sin(% + %)]
=12 [0055% +isin 5%]

b) % =g[c05(% ~ ) +isin(T - 7/)]

= 3[cos% +isin cos%]

e Argument of a product

The argument of the product of two complex numbers is the sum of their arguments.




Proof:
Let z, =r,(cosé, +ising,) and z, =r,(cosé, +ising,).

Now z,.z, =, (cos @, +isiné,).r,(cos &, +isinb,)
=r,.1,[cos g, (cos b, +isinG,) +ising,(cos &, +isinb,)]

=1,.1,[cos g, cos b, +icos b, sin b, +isiné, cos b, —sin g, sin b, ]

=1,.1,[cos 6, cos B, —sin @, sin &, +i(cos &, sin 6, +sin 6, cos 6,)]

=r.r,[cos(6, + 6,) +i sin(6, + 6,)]

L[ sin(6, +6,)
arg(z,.z,) =tan| —2 222
=ay(2,.2,) {cos(e1 +«92)]

= tan*(tan(4, + 6,))

=0,+0,

e Argument of a quotient

The argument of the quotient of two complex numbers is the difference of their arguments




Proof:

Z _ _
arg(z—l) =arg(z,.z, ) =arg(z,) +arg( z, ) =arg(z,) + —(arg z,) = arg(z,) —arg( z,)
2
-4 )
Example 2.54: ar —arg(—4) —arg(1+/3i) =7 -7/ = 27
o757 = a4 —ar(1+30) = 7~ 74 = 27

De Moivre’s Formula

recall the product: z,.z,=r,.r,[cos(d, +6,)+isin(6, +6,)].
Similarly, we get z,.z,.---.2, =1.1,.---.1, [cos(6, + 6, +---+ 6,) +isin(, + 0, +---+ 6,)].
Now we can generalize that z" =r"[cos(@+ O +---+ ) +isin(@+ O +---+6)]

=r"[cosnd +isinnd] which is called DeMoivre's formula.

Example 2.55: Express (2 + 2i)'% in polar form.

Solution: Let z=2+2i.Then, r = \/§, 0= % and hence
(2 + 2i)100 — Z100
= /8" [c05100(*7/;) +isin100(7/,)]

=8°%[cos 257 +isin 257].

Example 2.56: Express (\/§ +1)® in polar form.



Solution : Let z=+/3+i.Then,r =2, 9:%.
oo (B0 =2
= 2%[c0s 60(7/5) +isin60(7/)]

=2°[cos10x +isin10x].

Euler’s formula

The complex number z = r(cos@+isin @) can be written in exponential form as: z = re'’ which is

called Euler’s formula.

Note: z" =r"(cosné+isinng) =r"e' "

Example 2.57: Express the complex number z = 1+i using Euler’s formula.

Solution : z=1+i
Now r=+2 & e=% s 7—re? =27

Example 2.58: Express the complex number Z =1+\/§i using Euler’s formula.

Solution : z :1+\/§i
_ _TT — ralf _ ﬂ%
Now r=2 & G_A = z=re" =2¢e

Example 2.59: Express the complex number Z = (\/§+ i)’ using Euler’s formula.

Solution :z = (\/3+i)’

77

iz iz
Now r=2,0=7/ =(3+1) =2"e® =128e°



2.2.8 Extraction of roots

Suppose z, =r,e'* is the n™ root of a non - zero complex number z =re'’, where n > 2.

Then, z," = z,which implies that r,"e"% = re'’

=r'=r &nf,=0+2kr, k=0,1,2,--(n-1).

:>r—(r)}/ &@_Q 27
n n
92k7r

z, —(r)}/(e non )WhICh is the n™ root of z, wheren=2,3,--- and k= 0,1,2,---(n-1)

6’ 2k7r

or we can denote it by C, as : —(r)}/(e non ) k=20,12,---(n=-1)

Example 2.60: Find the square roots of the complex number z=1+ \/§i.

Solution :
z=1++/3i
Here r=2, 6’:77
62k7r
Hence C, (r)y(e non )n_ , k=0, 1.
=C, =(2)%(e D

=G, —2( )

i) If k=0, C, =v2(e'"®) = V2 (cos T4 +isin /) = f(£ : =%(ﬁ+i)=§+@

i) If k=1,C, =v2(' %)= V2 (cos T +isin 770y = J_(_‘/___)__‘/_(f _\/__@

. The square roots of 1++/3i are C,="2>+X>" & C,=—>_X=°

J€+J§i
2 2 2 2



Example 2.61: Find the cube roots of the complex number z = 8.

Solution : We havez =8i. Here r=8, =7 n=3, k=0,1, 2.

21
.0 2krw

Hence, C, =(r)%(e'(ﬁ+7))

(72,2
=C, =@ °C" )

o2
—C, =273

i) If k=0, CO:2(ei(%)):(cos%+isin%):2(§+i = J3+i

E)
i) If k=1, clzz(e‘(%*z%’):2(cos5%+isin5%)=2(_Tﬁ+%)=—ﬁ+i

i) If k=2, C, =2(e"7"7) = 2(cos 374 +isin37/) = 2(0+ i) = 2i

~. The cube roots of 8i are C, =+3+i , C,=—/3+i &C, =-2i.

Exercise 2.4

1. Find the argument of the following complex numbers:

a) z=—— b) ZZ(\/§—i)6

2. Show that a) |e' |=1 b) e'? =e?

3. Using mathematical induction, show that €'%. '% . ....e'h =g!@*++h) " n -2 3 ...

4. Show that a) cos 36 = cos® & —3cos fsin’ @ b) sin36 =3cos® #sin @ —sin® &




5.Showthat 1+ z+z%+---+2"

6. Find the square roots of z = 9i
7. Find the cube roots of z = — 8i

8. Solve the following equations:

)22 =8i b)z2+4i=0

n+1

, for z=1.
1-z

c) 22 -4i=0




Chapter 3

Functions

Our everyday lives are filled with situations in which we encounter relationships between two sets. For
example,

e To each automobile, there corresponds a license plate number
e To each circle, there corresponds a circumference
e To each number, there corresponds its square

In order to apply mathematics to a variety of disciplines, we must make the idea of a “relationship”
between two sets mathematically precise.

On completion of this chapter students will be able to:

» understand the notion of relation and function

determine the domain and range of relations and functions
find the inverse of a relation

define polynomial and rational functions

perform the fundamental operations on polynomials
find the inverse of an invertible function

apply the theorems on polynomials to find the zeros of polynomial functions
apply theorems on polynomials to solve related problems

sketch and analyze the graphs of rational functions
define exponential, logarithmic, trigonometric and hyperbolic functions

sketch the graph of exponential, logarithmic, trigonometric and hyperbolic functions
use basic properties of logarithmic, exponential, hyperbolic and trigonometric functions
to solve physical problems

VV YV V VY Y Y VYYVYY

In this chapter, we first look at the definitions of relations and functions, and study real valued functions
and their properties, types of functions, polynomial functions, zeros of polynomial functions, rational
functions and their graphs, logarithmic, exponential, trigonometric and hyperbolic functions and their
graphs. Let’s begin with the review of relations and functions.

3.1. Review of relations and functions



After completing this section, the student should be able to:
define Cartesian product of two sets

understand the notion of relation and function
know the difference between relation and function

determine the domain and range of relations and functions
find the inverse of a relation

YV V VY

The student is familiar with the phrase ordered pair. In the ordered pair (2,3),(-2,4) and (a,b);

2,—2 and a are the first coordinates while 3,4 and b are the second coordinates.

e Cartesian Product

Given sets A={3,4} and B ={2,4,5}. Then, the set {(3,2),(3,4),(35),(4,2),(4,4),(4,5)} is the
Cartesian product of A and B, and itis denoted by AxB.

Definition 3.1: Suppose A and B are sets. The Cartesian product of A and B, denoted by AXx B, is the set
which contains every ordered pair whose first coordinate is an element of A and second coordinate is an

element of B, i.e.

AxB={(a,b):ac Aand beB}.

Example 3.1: For A={2,4} and A={-1,3}, we have

a) AxB={(2-1),(23),(4-1),(43)}, and
b) BxA={(-12),(-14),(32),(34)}.

Example 3.2: Let A={12,3} and B={ab, C}. Then,

AxB={(1a),(1b),(Lc),(2,a),(2,b),(2,c),(3a),(3b),(3 )}

From example 3.1, we can see that Ax B and B x A are not equal. Recall that two sets are equal if one
is a subset of the other and vice versa. To check equality of Cartesian products we need to define
equality of ordered pairs.

Definition 3.2: (Equality of ordered Pairs)
Two ordered pairs (@,0) and (C,d) are equalifandonlyif @=C and b=d.




Definition 3.3: (Relation from A into B)

If A and B are sets, any subset of AX B s called a relation from A into B.

Suppose R is a relation from a set A to a set B. Then, Rc AxB and hence for each (a,b)e AxB , we
have either (&,0) R or (a,b) 2R f (@,b) eR we say “a is R-related (or simply related) to b”, and
write aRb _if (3,0) R we say that “g is not related to b”.

In particular if R is a relation from a set A to itself, then we say that R is a relation on A.

Example 3.3:

1. Let A={1,357} and B={6,8}. Let R be the relation “less than” from A to B. Then,
R={(16).(18).((36).(38).(56).(58).(7.8)}-
2. Let A={1,2,34,5} and B ={a,b,c}.
a) The following are relations from A into B;
i) R ={(a)}
i) R, ={(2b),(3b).(4,).(5a)}
i) Ry={(a),((2,b).(3 )}
b) The following are relations from B to A;
i) R, ={(a.3),(b1)}
i) Ry={(b2),(c.4).(a,2),(b,3)}
iii) Rs ={(b,5)}

Definition 3.4: Let R be a relation from A into B . Then,
a) the domain of R, denoted by Dom(R), is the set of first coordinates of the elements of
R,ie
Dom(R)={a e A:(a,b) eR}
b) the range of R, denoted by Range(R), is the set of second coordinates of elements of R,
i.e
Range(R) ={bB:(a,b) e R}

Remark: If R is a relation from the set A to the set B, then the set B is called the codomain of the
relation R . The range of relation is always a subset of the codomain.




Example 3.4:

1. The set R={(4,7),(58),(610)} is a relation from set A={1,2,3456} to set
B ={6,7,8,9,10}. The domain of R is {456}, the range of R is {7,8,10} and the
codomain of R is {6,7,8,9,10}.

2. The set of ordered pairs R ={(8,2),(6,-3),(57),(5—-3)} is a relation between the sets
{5,6,8} and {2,-3,7}, where {5,6,7} is the domain and {2,—3,7} is the range.

Remark:

1. If (a,b)eR forarelation R, we say a is related to (or paired with) b . Note that a may

also be paired with an element different from b . In any case, b is called the image of a
while a is called the pre-image of b under R.

2. If the domain and/or range of a relation is infinite, we cannot list each element
assignment, so instead we use set builder notation to describe the relation. The situation
we will encounter most frequently is that of a relation defined by an equation or formula.
For example,

R={(x,y):y=2x-3,x,y e R}
is a relation for which the range value is 3 less than twice the domain value. Hence,
(0,—3),(0.5,—2)and (—2,—7) are examples of ordered pairs that are of the assignment.

Example 3.5:

1. Let A={1,2,34,6}
Let R be the relation on A defined by R={(a,b):a,be A ais a factor of b}. Find the
domain and range of R.

Solution: We have
R={(11),(12),(13),(14),(16),(2.2),(2,4),(2,6),(33),(36),(4.4),(6.6)}.
Then, Dom(R) ={1,2,3,4,6} and Range(R) ={1,2,3,4,6}.

2. Let A={1,234,55} and B={1,2,3,---,67}.
Let R={(X,y) € AxB: xis cube root ofy} .Finda) R b) Dom(R) c¢) Range(R)



Solution: We have lz?{’/i, 22%, 323\’/5, 4=%/@, 5=3%125 and 1,8,27 and 64 are in B
whereas 125 is not in B. Thus, R={(11),(28),(327),(4,64)}, Dom(R)={12,34} and
R ={18,27,64}.

Remark:

1. Arelation R onaset A iscalled
i) auniversal relation if R=AxA
ii) identity relation if R={(a,a):a < A}
iii) void or empty relation if R=¢

2. If Ris a relation from A into B, then the inverse relation of R, denoted by R™, is a
relation from B to A and is given by:

R™ ={(y,x): (x,y) eR}.
Observe that Dom(R)=Range(R™) and Range(R)=Dom(R™). For instance, if

R ={(1L4),(9,15),(10,2)} is a relation on a set A={1,2,3,---,20}, then R™* ={(4,1),(15,9),(2,10)}

Example 3.6: Let R be a relation definedon IN by R={(a,b):a,beIN, a+2b=11}.

Find a) R b) Dom(R) c) Range(R) d) R™

Solution: The smallest natural number is 1.
b=1 = a+2()=11 —a=9
b=2 = a+2(2)=11 —a=7
b=3 = a+2(3)=11 —a=5
b=4 = a+2(4)=11 —=a=3
b=5 = a+2(5)=11 —a=1
b=6 = a+2(6)=11 —a=-1¢IN

Therefore, R={(91).(7:2).(53).(34),(L5)}, Dom(R) ={L357.9}, Range(R)={12345} and
R ={(19).(27).(35).(43), (51)}.



e Functions

Mathematically, it is important for us to distinguish among the relations that assign a unique range
element to each domain element and those that do not.

Definition 3.5: (Function)
A function is a relation in which each element of the domain corresponds to exactly one element of the range.

Example 3.7: Determine whether the following relations are functions.

a) R={(5-2),(3%).(37)} b) R {(2,4),(3,4),(6,-4)}

Solution:

a) Since the domain element 3 is assigned to two different values in the range, 5 and 7, it is
not a function.

b) Each element in the domain, {2,3,6}, is assigned no more than one value in the range, 2 is
assigned only 4, 3 is assigned only 4, and 6 is assigned only — 4. Therefore, it is a
function.

Remark: Map or mapping, transformation and correspondence are synonyms for the word function. If

f isafunctionand (X,y) € f , we say x is mapped to y by f.

Definition 3.6: A relation f from A into B is called a function from A into B, denoted by
f:A>B o, A—>B
if and only if
(i) Dom(f)=A
(i)  No element of A is mapped by f to more than one element in B, i.e. if (X,y) € f
and (x,2)ef then y=2.

Remark: 1. If to the element x of A corresponds y(€ B) under the function f , then we write

f(X)=Y and Y is called the image of x under Y and x s called a pre-image of ¥ under T .




2. The symbol f(X) isreadas“ T of ¥’ butnot“ f timesx”.

3. In order to show that a relation f from A into B is a function, we first show that the
domain of f is A and next we show that f well defined or single-valued, i.e. if X=Y in
A, then F(X)=f(y) inBforall X,yeA,

Example 3.8:

1. Let A={1234} and B={L681115} Which of the following are functions from A to
B.

a) T definedby f(1)=11(2)=6, f(3)=8, f(4)=8

b) f definedby f(D)=1 f(2)=6, f(3)=15

¢) f definedby f(1)=6, f(2)=6, f(3)=6, f(4)=6

d) f definedby f()=1 f(2)=6, f(2)=8, f(3)=8, f(4)=11
e) f definedby f(1)=1 f(2)=8 f(3)=11 f(4)=15

Solution:
a) f is a function because to each element of A there corresponds exactly one element of B.
b) f is not a function because there is no element of B which correspond to 4( € A).

c) f is a function because to each element of A there corresponds exactly one element

of B. In the given function, the images of all element of A are the same.

d) f is not a function because there are two elements of B which correspond to 2.

In other words, the image of 2 is not unique.

e) f is a function because to each element of A there corresponds exactly one element

of B.

As with relations, we can describe a function with an equation. For example, y=2x+1 is a function, since
each x will produce only one Y.
. 2
2. Let F={(xy):y=x} Then, f maps:

1tol -1to 1l
2to4 -2to4



3to9 -3t0 9

More generally any real number x is mapped to its square. As the square of a number is unique, f

maps every real number to a unique number. Thus, f isa function from R into R.

We will find it useful to use the following vocabulary: The independent variable refers to the variable
representing possible values in the domain, and the dependent variable refers to the variable

representing possible values in the range. Thus, in our usual ordered pair notation (x, Y), x is the
independent variable and Y is the dependent variable.

3. Letf be the subset of Q xZ defined by f ={§ pji p.qeZ,q ¢0}. Is f a function?

Solution: First we note that Dom(f)=Q. Then, f satisfies condition (i) in the
definition of a function. Now, 2.2)e f (¢4)ef and 2=% put f(3)=2=4=f(2),
Thus f is not well defined. Hence, f is not a function from Q to Z.

4. Let T bethe subset of ZxZ defined by f ={(mn,m+n):mneZ} |s f afunction?

Solution: First we show that f satisfies condition (i) in the definition. Let X be any
element of Z. Then, X=X-1_ Hence, (X, Xx+1)=(x-Lx+1)ef This implies that
x e Dom(f) . Thus, Z < Dom(f). However, Dom(f)<=Z and so Dom(f)=Z Now,
4eZ and 4=4-1=2-2 Thus, (4-14+1) and (2-2,2+2) arein f.Hence we find that
4-1=2-2 gnd f(4-1)=5=4=1(2-2). This implies that f is not well defined, i.e, f
does not satisfy condition (ii). Hence, f is nota function from Z to Z .

e Domain, codomain and range of a function
For a function f :A—B

Q) The set A is called the domain of f
(i)  The set B is called the codomain of f
(iiiy  The set {f(X):x € A} of all image of elements of A is called the range of f

Example 3.9:

1. Let A={123} and B={123---10} Let f:A—>B be the correspondence which

assigns to each element in A, its square. Thus, we have f()=1 f(2)=4, f(3)=9.
Therefore, f is a function and Dom(f)={123} Range(f)={L4,9} and codomain of
fis {1,2,3,---10}.



2. Let A={24,6,79},B=IN_ Let X and Y represent the elements in the sets A and B,
respectively. Let f:A— B be a function defined by f(X)=15x+17, xe A,

The variable X can take values 2, 4, 6, 7, 9. Thus, we have
f(2) =15(2) +17 =47, f(4) =77, T (6) =107, f (7) =122, f(9) =152
This implies that Dom(f) ={2,4,6,7,9}, Range( f) ={47,77,107,122,152} and codomain

of fis IN,

3. Determine whether the following equations determine Y as a function of X, if so, find
the domain of the function.

a) Y=-3X+5 b) y= c) Y2 =X

3x-5

Solution:

a) To determine whether Y =—3X+5 gives Y as a function of X, we need to know
whether each x-value uniquely determines a y-value. Looking at the equation

y=-3X+5, we can see that once X is chosen we multiply it by — 3 and then add 5.

Thus, for each x there is a unique Y. Therefore, ¥ =—3X+5 is a function. It domain
is the set of all real numbers.

X
b) Looking at the equation Y = 3x_5 carefully, we can see that each x-value uniquely
determines a y-value (one x-value can not produce two different y-values). Therefore,
y= X functi
3x _5 Isafunction.
2X

As for its domain, we ask ourselves. Are there any values of X that must be excluded? Since ¥ =

3X-5
is a fractional expression, we must exclude any value of X that makes the denominator equal to zero.
We must have

X-5#0 < x;t§

5 ] 5
Therefore, the domain consists of all real numbers except g . Thus, Dom(f)={x:x= 5}



c) For the equation Y° =X, if we choose X=9 we get Y° =9, which gives Y =%3. In

other words, there are two Y —values associated with X =9 Therefore, y2 =X is not
a function.

4. Find the domain of the function Y = v3X —x?

Solution: Since Y is defined and is real when the expression under the radical is non-
negative, we need X to satisfy the inequality

3X-x*>0 < x(3-x)=>0
This is a quadratic inequality, which can be solved by analyzing signs:

e B B
7

Sign of 3x—X? )
0 3

2
Since we want 3X—X" =X(3—X) to be non-negative, the sign analysis shows us that the domain is

{x:0<x<3}or [0,3].

Exercise 3.1

1. LetR be arelation on the set A={L2,34,5,6} defined by R={(a,b):a+b<9}.

i) List the elements of R
i) IsR=R"

2. LetR be a relation on the set A={1,2,3456,7} defined by R ={(a,b) :4 divides a—b}.
i) List the elements of R

i)  Find Dom(R) & Range(R)

i)  Find the elements of R™
iv)  Find Dom(R™) & Range(R™)

3. Let A={12,34,56} Define a relation on A by R={(X,y):y=x+1}, Write down the
domain, codomain and range of R. Find R™.

4. Find the domain and range of the relation {(X,y):|x|+y>2},

5. Let A={L2,3} and B={35,6,8}. Which of the following are functions from A to B?

a) f={(13).(23).(33)} c) f={18).(25)}
b) f={13).(25).(1.6)} d) f={16).(25).(33)}

6. Determine the domain and range of the following relations. Which relation a function?
a) {(-4-3).(2-5),(46).(20)} d) {(=2,8),(-11).GG.9)}

b) {(81_2)1(6!_%)7(_1'5)} e) {(0!5)’(115)1(215)1(3’5)’(415)1(515)}



) {(-v33).(-11),(00).(11),(v33} ) {(5,0).(5.1).(52).(53).(54),(55)}
7. Find the domain and range of the following functions.
a) f(x)=1+8x-2x c) f(x)=vx*—6x+8
1 N f(x):{3x+4,—l£x<2
x> —5x+6 1+x, 2<x<5
) 3x-5 x<1
8. Given f(X)=%X2_L (o1

Find a) f(-3) b) f (1) c) f(6)

by f(x)=

3.2 Real Valued functions and their properties

After completing this section, the student should be able to:

» perform the four fundamental operations on polynomials

» compose functions to get a new function

» determine the domain of the sum, difference, product and quotient of two functions
» define equality of two functions

Let f be a function from set A to set B.If B is a subset of the set of real numbers R, then f is
called a real valued function, and in particular if A is also a subset of R, then f:A— B is called a

real function.

Example 3.10: 1. The function f : R — R defined by f(X)=x*+3x+7, X R is a real function.

2. The function f ;R — R defined as f (x) = |X| is also a real valued function.

e Operations on functions

Functions are not numbers. But just as two numbers @ and b can be added to produce a new number
a+Db, so two functions f and ¢ can be added to produce a new function f + Q. This is just one of

the several operations on functions that we will describe in this section.



X_

3
Consider functions f and g defined by f(x)= and g(X) = VX . We can make a new function

X

-3
f + g by having it assign to X the value 5 ++/X, that is,

(f +0)(x) = f(x)+g(x)=XT‘3+&.

Definition 3.7: Sum, Difference, Product and Quotient of two functions

Let f(X) and g(X) be two functions. We define the following four functions:

1. (f+9)(X)=f(x)+g(x) The sum of the two functions
2. (f=g)(x)=f(x)—ag(x) The difference of the two functions
3. (f-9)(x)=1(x)g(x) The product of the two functions
(é}(x) = % The quotient of the two functions (provided g(x) = 0)
X

Since an X —value must be an input into both f and ¢, the domain of (f + g)(x) is the set of all X common
to the domain of f and @ . This is usually written as Dom( f +g) = Dom( ) Dom(g) . similar statements
hold for the domains of the difference and product of two functions. In the case of the quotient, we must impose
the additional restriction that all elements in the domain of (J for which g(X) =0 are excluded.

Example 3.11:

1. Let f(x)=3x*+2 and g(x) =5x—4. Find each of the following and its domain

a) (f+9)(x) b) (f-9)(x) c) (f.9)(x) d) (éj(x)

Solution:
a) (f+9)(X)=f(X)+g(x)=(3x*+2)+(5x—4) =3x" +5x -2

b) (f—g)(x) = f(X)—g(x) = (3x +2) — (5x—4) = 3x> —5X +6
c) (f-g)(x)=(3x*+2)(5x—4) =15x* -12x* +10x -8

Q) GJ(X): f(x) 3x*+2

g(x) ~ 5x—4



We have

Dom(f +g) =Dom(f —g) =Dom(fg) =Dom(f)Dom(g)=RMNR=NR

Dom(éj =[Dom( )N Dom(g)]\{x: g(x) =0} =9\ {%}

2. Let f(x)=4x+1 and g(x)=+v9-x*, with respective domains [-1,0) and [-33].

Find formulas for f +g,f —g, f -g,é and f* and give their domains.

Solution:
Formula Domain
(f +9)() = F(X)+g(x) =4/x+1+/9—x* [-13]
(f—9)(0 = () -g(x) =4/x+1-o-x [-13]
(f-9)(x)=f(x)-g()=4x+1-V9-x [-13]
(-
200 =(f(0) = {x+1f = (x+2) [-1,00)

There is yet another way of producing a new function from two given functions.

Definition 3.8: (Composition of functions)

Given two functions f (X) and g(X), the composition of the two functions is denoted by f o @ and is defined
by:

(fo9)(x) = flg(x)].
(fog)(X) isread as " f composed with g of X". The domain of f oQ consists of those X's in the

domain of § whose range values are in the domain of f ,i.e. those X's for which g(X) isin the domain of f .

Example 3.12:



1. Suppose f ={(2,2),(3,9)} and g={(@,2),(b,3),(c,5)}. The function
(fog)(x)= f(g(x)) is found by taking elements in the domain of g and evaluating as
follows:

(feg)@=f(g(@)=1(2)=z, (f-g)b)=T(g(d)="F(3)=q

If we attempt to find f(g(c)) we get f(5), but 5 is not in the domain of f(X) and so we cannot find
(fog)(c).Hence, fog={(a,z),(b,qg)}.The figure below illustrates this situation.

iilrlﬂ.\k f
" ‘
Domain of g Range of g Range of f

2. Given f(x)=5x*-3x+2 and g(x)=4x+3, find
a) (fo0)(-2) b) (g° f)(2) c) (fog)(x) d) (9o f)(x)

Solution:

a) (fog)(-2)="1(g(-2)...... First evaluate g(—2) =4(-2)+3=-5
= f(-5)
—5(-5)% —3(-5) +2 =142
b) (gof)(2)=09(f(2)....... First evaluate f(2)=5(2)>-3(2)+2=16
=9(16)
= 4(16) +3=67
c) (fog)(X)=1f(Q(Xx))....... But g(x) =4x+3
— f(4x+3)
=5(4x+3)* —3(4x+3)+2
=80x* +108x + 38
d) (gef)(X)=9g(f(x))....... But f(x)=5x*—-3x+2
=g(5x* —3x+2)
=4(5x* -3x+2)+3
=20x* —12x+11

3. Given f(x):L and g(x):i,find
X+1 x-1



a) (fog)(x) and its domain b) (g~ f)(x) and its domain

2
. 2 x—1 2 .
Solution: a) (f og)(x) = f = = .Thus, Dom(f o g) ={x:x#£1}.
x—1 2 X+1
—+1
x—1
b) (geo f)(X)=g(f(x))= < =-2x—2. Since x must first be an input into f(x)
I
X+1
and so must be in the domain of f , we see that Dom(go f)={x: x = -1}.

ox and g(x) =+/3x . Find (fo0)(12) and (g f)(x) and its domain.

4. Let f(x)=
(x) 79

Solution: We have (f o g)(12) = f(g(12)) = f (\/36) = f (6) =& =4.

6v3x  6V3x _ 24/3x
(/3x)2-9 3x-9 x-3°

(fog)(x)=f(g(x) = f(3x)=

The domain of fog is [0,3)U(3,).

We now explore the meaning of equality of two functions. Let f:A—>B and g: A— B be two
functions. Then, f and ¢ are subsets of AxB. Suppose f =(. Let X be any element of A. Then,
(X, f(x))e f =g and thus (X, f(X))eg. Since g is a function and (X, f (X)), (x,g(x)) g, we
must have f(X)=g(X). Conversely, assume that g(X) = f(X) for all xe A. Let (X,y) € f . Then,
y=f(X)=9g(X).Thus, (X,¥) € g, which implies that f < . Similarly, we can show that g < f . It
now follows that f =(. Thus two functions f:A—B and g: A— B are equal if and only if
f(X) =g(x) forall x e A.In general we have the following definition.

Definition 3.9: (Equality of functions)
Two functions are said to be equal if and only if the following two conditions hold:
1) The functions have the same domain;
i) Their functional values are equal at each element of the domain.

Example 3.13:



1. Let f:Z—>Z"U{0} and g:Z —>Z"U{0} be defined by f ={(n,n*):neZ} and
g={(n[):neZ}. Now, forall neZ, f(n)=n>=|n[* =g(n). Thus, f =g.

x? —25

2. Let f(x)= z , XxeR\{B}, and g(x) =x+5, xeR. The function f and g are not

equal because Dom( f) = Dom(Q).

Exercise 3.2

1. For f(x)=x*+x and g(x) = L:% find each value:
X+

2 (f-0)@) XRE ) (9 1))
b) @(1) Q) (f-0)® N (9°9)(3)
2. If f(x)=x*+2 and g(x) =%1, find a formula for each of the following and state its
domain.
8) (f+g)(x) ¢) [%j(x)
b) (fg)(X) 0) (go F)(x)

3. Let f(x)=x%and g(x)=+/x.
a) Find (f og)(x) and its domain.
b) Find (go f)(x) and its domain
c) Are (fog)(x)and (geo f)(x) the same functions? Explain.
4. Let f(x)=5x—-3.Find g(x) sothat (f og)(x)=2x+7.
5. Let f(x)=2x+1. Find g(x) sothat (f og)(x)=3x-1.
6. If f isareal function defined by f(x):x—_l.Show that f(2x):3f(x)+1.
X+1 f(x)+3

7. Find two functions f and g so that the given function h(x) =(f o g)(x), where

a) h(x)=(x+3)° c) h(x):§+6
b) h(x)=+/5x—3 d) h(x) =1
X+6
8. Let f(x)=4x-3, g(x):i and h(x) = x* —x. Find
a) f(5x+7) c) f(g(h(d))) e) f(x+a)

b) 5f(x)+7 d) f(1)-9(2)-h(3) f) f(x)+a



3.3 Types of functions and inverse of a function

After completing this section, the student should be able to:
» define one to oneness and ontoness of a function
» check invertibility of a function

> find the inverse of an invertible function

In this section we shall study some important types of functions.

e One to One functions

Definition 3.10: A function f : A—> B is called one to one, often written 1 — 1, if and only if for all

X, X, € A, T(x;)=f(X,) implies X; =X,. In words, no two elements of A are mapped to one

element of B .

Example 3.14:

1. If we consider the sets A={1,2,3,---,6} and B={7,a,b,c,d,8,e} and if f ={(@1,7), (2,2),
(3,b), (4,b),(5,),(6,8)} and g ={(17),(2,a),(3,b),(4,c),(58),(6,d)}, then both f and
g are functions from A into B. Observe that f is not a 1 — 1 function because
f(3)=f(4) but 3=4. However, g isal -1 function.

2. Let A={1,2,34} and B ={1,4,7,8}. Consider the functions
i) f:A—B definedas f(1)=1 f(2)=4, f(3)=4, f(4)=8
i) g:A— B definedas f(1)=4,1(2)=7, 1(3)=1, f(4)=8

Then, f isnot1-1,but g isa1-1 function.

e Onto functions



Definition 3.11: Let f be a function from a set A into a set B.Then f is called an onto function(or f

maps onto B) if every element of B is an image of some elementin A, i.e, Range(f) = B.

Example 3.15:

1. Let A={1,2,3}and B ={14,5}. The function f:A— B defined by f(1)=1, f(2)=5,
f(3) =1 is not onto because there is no element in A, whose image under f is 4. The
function g: A— B given by g ={(14),(2,5),(3,1)} is onto because each element of B is
an image of at least one element of A .

Note that if A is a non-empty set, the function i, : A— A defined by i,(x)=x for all
xe Aisal-1 function from A onto A. i, is called the identity map on A.

2. Consider the relation f from Z into Z defined by f(n)=n? for all neZ. Now,
domain of f is Z. Also, if n=n’, then n*> =(n)?,i.e. f(n)=f(n"). Hence, f is well
defined and is a function. However, f(1)=1= f(-1) and 1= -1, which implies that f
isnotl1—1. Forall neZ, f(n) is a non-negative integer. This shows that a negative
integer has no preimage. Hence, f is not onto. Note that f isonto {0,1,4,9,--}.

3. Consider the relation f from Z into Z defined by f(n)=2n forall neZ. As in the
previous example, we can show that f is a function. Let n,n"eZ and suppose that
f(n)=f(n"). Then 2n=2n" and thus n=n". Hence, f is 1 — 1. Since forall neZ,
f (n) is an even integer; we see that an odd integer has no preimage. Therefore, f is not
onto.

e 1-1 Correspondence

Definition 3.12: A function f : A— B issaid to be a1 — 1 correspondence if f is both 1 —
1 and onto.

Example 3.16:

1. Let A={0,1,2,34,5 and B={0,510,15, 20, 25}. Suppose f:A—>B given by
f(x)=5x for all xe A. One can easily see that every element of B has a preimage in
A and hence f is onto. Moreover, if f(x)= f(y), then 5x=5y, i.e. Xx=y. Hence, f
is1—1. Therefore, f isal— 1 correspondence between A and B.

2. Let A beafinite set. If f:A— A isonto, then it is one to one.



Solution: Let A={a,,a,,---,a,}. Then Range(f)={f(a,), f(a,),---, f(a,)}. Since f is onto we
have Range(f)=A.Thus, A={f(a,), f(a,),---, f(a,)}, which implies that f(a;), f(a,), ---,
f(a,) areall distinct. Hence, a; #a; implies f(a;) = f(a;) forall 1<i, j<n.Therefore, f is1-
1.

e Inverse of a function

Since a function is a relation , the inverse of a function f is denoted by f ! and is defined by:

Fr={(y.9):(xy)e f}

For instance, if f ={(2,4),(36),(1L,7)}, then f*={(4,2),(6,3),(7,1)}. Note that the inverse of a
function is not always a function. To see this consider the function f ={(2,4),(3,6), (54)}. Then,
f 1 ={(4,2),(6,3),(4,5)}, which is not a function.

As we have seen above not all functions have an inverse, so it is important to determine whether or not
a function has an inverse before we try to find the inverse. If the function does not have an inverse, then
we need to realize that it does not have an inverse so that we do not waste our time trying to find
something that does not exist.

A one to one function is special because only one to one functions have inverse. If a function is one to
one, to find the inverse we will follow the steps below:

1. Interchange x and y in the equation y = f(x)
2. Solving the resulting equation for y , we will obtaining the inverse function.

Note that the domain of the inverse function is the range of the original function and the range of the
inverse function is the domain of the original function.

Example 3.17:
1. Given y= f(x)=x*.Find f* and its domain.

Solution: We begin by interchanging X and Y, and we solve for V.



y= & Interchange X and Y
X = y3 Take the cube root of both sides

?{/; =y This is the inverse of the function

Thus, f *(X) = 3/X . The domain of f ~* is the set of all real numbers.
X : 1
2. Let y="f(X)=——=.Find f 7 (x).
X+2

Solution: Again we begin by interchanging X and Y, and then we solve for V.

X
y=—— Interchange X and y
X+2
__Y -
X=—— Solving for Y
y+2

X(Yy+2)=y & xy+2x=y < 2x=Yy(l-X) <:>y:12_x
—X

Thus, f () =12—X.

Remark: Even though, in general, we use an exponent of —1 to indicate a reciprocal, inverse function

notation is an exception to this rule. Please be aware that f _l(X) is not the reciprocal of f .Thatis,

f‘l(x);zrsi

f(x)
If we want to write the reciprocal of the function f (X) by using a negative exponent, we must write

1 1
m=[f(x)] :

Exercise 3.3

1. Consider the function f ={(x,x?):xeS} from S={-3,-2,-1,01,2,3} into Z.Is f one
to one? Is it onto?
2. Let A={1,2,3}. List all one to one functions from A onto A.



3. Let f:A—B.Let f* betheinverse relation, i.e. f*={(y,x)eBxA: f(x)=y}.
a) Show by an example that f* need not be a function.
b) Show that f* isa function from Range(f) into A ifandonlyif f is1-1.
c) Showthat f* isa function from B into A ifand onlyif f is1 -1 and onto.
d) Show thatif f* isafunction from B into A, then f*=1f".

4. Let A={xeR:0<x<1} and B={xeR:5<x<8}. Show that f: A— B defined by
f(x)=5+(8-5)x isal-1 function from A onto B.

5. Which of the following functions are one to one?
a) f:R—>R definedby f(x)=4,xeR
b) f:R—> R definedby f(x)=6x-1, xeR
c) f:R->N definedby f(X)=x*+7,xeR
d) f:R—->R definedby f(x)=x> xeR
2x+1

e) f:R\{7}— R defined by f(x)= xe R\{7}

6. Which of the following functions are onto?
a) f:M—>NR definedby f(x)=115x+49, xeR

b) f:R— N definedby f(x) =[x, xeR

c) f: %R definedby f(x)=x2, xeR

d f:R->R definedby f(X)=x>+4,xeR
7. Find f(x) if

a) f(x)=7x—6 d) f(x)=% g) f(x)==—(x+2)* -1
2x-9 5x+3 2X

b) f(x)= e) f(x):1—2x h) f(x):m

) f(x)= 1—§ f) £(x)=¥x+1

3.4 Polynomials, zeros of polynomials, rational functions and their graphs

After completing this section, the student should be able to:

» define polynomial and rational functions

» apply the theorems on polynomials to find the zeros of polynomial functions
» use the division algorithm to find quotient and remainder



» apply theorems on polynomials to solve related problems
» sketch and analyze the graphs of rational functions

The functions described in this section frequently occur as mathematical models of real-life situations.
For instance, in business the demand function gives the price per item, P, in terms of the number of

items sold, X.Suppose a company finds that the price p (in Birr) for its model GC-5 calculator is related

to the number of calculators sold, X (in millions), and is given by the demand function p =80— xZ.

The manufacturer’s revenue is determined by multiplying the number of items sold ( X ) by the price per
item ( P ). Thus, the revenue function is

R = xp = X(80 — x*) = 80x — x*

These demand and revenue functions are examples of polynomial functions. The major aim of this
section is to better understand the significance of applied functions (such as this demand function). In
order to do this, we need to analyze the domain, range, and behavior of such functions.

e Polynomial functions

Definition 3.13: A polynomial function is a function of the form
y=ax"+a, X" +---+ax+a,, a, #0.

Each @; is assumed to be a real number, and N is a non-negative integer, @, is called the leading

coefficient. Such a polynomial is said to be of degree n.

Remark:

1. The domain of a polynomial function is always the set of real numbers.
2. (Types of polynomials)

- A polynomial of degree 1 is called a linear function.

- A polynomial of degree 2 is called quadratic function.

- A polynomial of degree 3 is called a cubic function.

ie p(x)=a,x’+a,x* +a,x+a,, a, #0.




Example 3.18: p(X)=2x*+1, q(x)=+/3x*+2x—7 and f(X)=2x" are examples of polynomial

functions.

e Properties of polynomial functions

1. The graph of a polynomial is a smooth unbroken curve. The word smooth means that the graph
does not have any sharp corners as turning points.

2. If p isapolynomial of degree N, then it has at most N zeros. Thus, a quadratic polynomial has
at most 2 zeros.

3. The graph of a polynomial function of degree N can have at most n —1turning points. Thus, the
graph of a polynomial of degree 5 can have at most 4 turning points.

4. The graph of a polynomial always exhibits the characteristic that as |X| gets very large,

y| gets

very large.
e Zeros of a polynomial

The zeros of a polynomial function provide valuable information that can be helpful in sketching its
graph. One can find the zeros by factorizing the polynomial. However, we have no general method for
factorizing polynomials of degree greater than 2. In this subsection, we turn our attention to methods
that will allow us to find zeros of higher degree polynomials. To do this, we first need to discuss about
the division algorithm. Recall that a number a is a zero of a polynomial function p if p(a) =0.

Division Algorithm

Let p(X) and d(X) be polynomials with d(x) #0, and with the degree of d(X) less than or equal
to the degree of P(X) . Then there are polynomials q(X) and R(X) such that

p(x) =d(x).q(x) + R(X) , where either R(X) =0 or the degree of R(X) is less than degree of

dividend divisor quotient  remainder

d(x).




x* -1
Example 3.19: Divide ———.
X"+ 2X

Solution: Using long division we have

X2 —2X+4
x2+2@x4+0x3+0x”+0x+1

—(x* +2x%)
—2x%+0x?
—(-2x° -4x?)
4x* +0x
— (4% +8x)
-8x-1

This long division means X* —1=(x? +2Xx).(x* —2x +4) +(-8x—-1).

dividend divisor quotient remainder

With the aid of the division algorithm, we can derive two important theorems that will allow us to
recognize the zeros of polynomials.

If we apply the division algorithm where the divisor, d(X), is linear (that is of the form X —T), we get

p(x) =(x-na(x)+R

Note that since the divisor is of the first degree, the remainder R, must be a constant. If we now
substitute X =T, into this equation, we get

P(r)=(r-r)q(r)+R=0-q(r)+R

Therefore, p(r)=R.

The result we just proved is called the remainder theorem.



The Remainder Theorem

When a polynomial pP(X) of degree at least 1 is divided by X—T, then the remainderis p(r).

Example 3.20: The remainder when P(X) = x> —x? +3x—1 is divided by x—2 is p(2)=9.

As a consequence of the remainder theorem, if X— is a factor of p(X), then the remainder must be 0.

Conversely, if the remainder is 0, then X—T, is a factor of P(X) . This is known as the Factor Theorem.

The Factor Theorem

X—T is afactor of p(x) ifand onlyif p(r)=0.

The next theorem, called location theorem, allows us to verify that a zero exists somewhere within an
interval of numbers, and can also be used to zoom in closer on a value.

Location theorem

Let f be a polynomial function and @ and b be real numbers such that a <b.If f(a)f(b) <0, then there

is at least one zero of T between @ and b.

The Factor and Remainder theorems establish the intimate relationship between the factors of a
polynomial pP(X) and its zeros. Recall that a polynomial of degree n can have at most n zeros.

Does every polynomial have a zero? Our answer depends on the number system in which we are
working. If we restrict ourselves to the set of real number system, then we are already familiar with the
fact that the polynomial p(X) = X% +1 has no real zeros. However, this polynomial does have two zeros
in the complex number system. (The zeros are | and —1i). Carl Friedrich Gauss (1777-1855), in his
doctoral dissertation, proved that within the complex number system, every polynomial of degree > 1

has at least one zero. This fact is usually referred to as the Fundamental theorem of Algebra.

Fundamental Theorem of Algebra

If p(X) is a polynomial of degree n >0 whose coefficients are complex numbers, then p(X) has at




least one zero in the complex number system.

Note that since all real numbers are complex numbers, a polynomial with real coefficients also satisfies
the Fundamental theorem of Algebra. As an immediate consequence of the Fundamental theorem of

Algebra, we have

The linear Factorization Theorem

If p(x)=a,x"+a, X" +---+a,Xx+a,, where n>1 and a, =0, then

p(x)=a,(x—r) (Xx—r,)---(Xx—r,), where the r, are complex numbers (possible real and not

necessarily distinct).

From the linear factorization theorem, it follows that every polynomial of degree n>1 has exactly n
zeros in the complex number system, where a root of multiplicity K counted K times.

Example 3.21: Express each of the polynomials in the form described by the Linear Factorization
Theorem. List each zero and its multiplicity.

a)  p(x)=x®-6x*-16x
b) g(x)=3x*-10x+8
o) f(x)=2x"+8x>+10x>

Solution:

a) We may factorize p(X) as follows:
p(x) = x® —6x* —16x= Xx(x* —6Xx—16)
=X(x—-8)(x+2)
=X(x-8)(x—(-2))

The zeros of P(X) are 0, 8, and — 2 each of multiplicity one.

b) We may factorize ((X) as follows:
q(x) =3x* —10x +8=(3x—4) (x—2)

~3(x-3)(x-2)
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Thus, the zeros of g(X) are 3 and 2, each of multiplicity one.

c) We may factorize f(X) as follows:
f(X)=2x" +8x3+10x> = 2x?*(x* +4x+5)
=2X*(X—(=2+D))(x—=(=2-1))

Thus, the zeros of f(x) are 0 with multiplicity two and —2+1i and —2—i each with multiplicity one.

Example 3.22:

1. Find a polynomial p(X) with exactly the following zeros and multiplicity.

zeros multiplicity
-1 3
2 4
5 2

Are there any other polynomials that give the same roots and multiplicity?

2. Find a polynomial f (x) having the zeros described in part (a) such that f(1) = 32.

Solution:

1. Based on the Factor Theorem, we may write the polynomial as:
p(¥)=(x= (D))’ (x=2)*(x=5)* = (x+1)* (x-2)*(x=5)°

which gives the required roots and multiplicities.

Any polynomial of the form Kp(X), where K is a non-zero constant will give the same roots and

multiplicities.

2. Based on part (1), we know that f(X)=k(x+1)% (x—2)*(x—5). Since we want f(x)=32,
we have
f)=k(1+1)°*@1-2)*(1-5)?
32=k(8)())(16) = k=%

Thus, f(X)=21(x+1)°(x-2)*(x-5)%.



Our experience in using the quadratic formula on quadratic equations with real coefficients has shown

us that complex roots always appear in conjugate pairs. For example, the roots of X2 —2X+5=0 are
1+ 2i and 1—2i. In fact, this property extends to all polynomial equations with real coefficients.

Conjugate Roots Theorem

Let p(X) be a polynomial with real coefficients. If complex number a+bi (where @ and b are real

numbers) is a zero of P(X), then so is its conjugate a—bi.

Example 3.23: Let r(X) = X* + 2x® —9x2 + 26X — 20. Given that 1—+/3 i is a zero, find the other zero
of r(x).

Solution: According to the Conjugate Roots Theorem, if 1— JV3iisa zero, then its conjugate, 1+ J3i
must also be a zero. Therefore, X —(1—+/3 i)and X—(L++/3 i) are both factors of r(x), and so their
product must be a factor of F(X). Thatis, [Xx —(1—~/3 i)] [x—(1++/31)]= x* —2x +4is a factor of
r(x). Dividing r(X) by X* —2x+4, we obtain

r(x) = (x* —=2x +4)(x* + 4x —=5) = (x> —=2x +4) (x +5) (x -1).

Thus, the zeros of r(X) are 1-+/3i , 1++/3i , —5 and 1.

The theorems we have discussed so far are called existence theorems because they ensure the existence
of zeros and linear factors of polynomials. These theorems do not tell us how to find the zeros or the
linear factors. The Linear Factorization Theorem guarantees that we can factor a polynomial of degree at
least one into linear factors, but it does not tell us how.

We know from experience that if p(X) happens to be a quadratic function, then we may find the zeros

of p(x)= Ax* +Bx+C by using the quadratic formula to obtain the zeros

—B+./B?-4AC

2A

X =

The rest of this subsection is devoted to developing some special methods for finding the zeros of a
polynomial function.




As we have seen, even though we have no general techniques for factorizing polynomials of degree
greater than 2, if we happen to know a root, say ', we can use long division to divide p(X) by X—r
and obtain a quotient polynomial of lower degree. If we can get the quotient polynomial down to a

guadratic, then we are able to determine all the roots. But how do we find a root to start the process?
The following theorem can be most helpful.

The Rational Root Theorem

Suppose that  f(x)=a x"+a, X" +---+aXx+a,, where n>1, a, #0 is an Nn"degree
polynomial with integer coefficients. If P is a rational root of f(X)=0, where p and Q have no

common factor other than £1, then p isafactor of a, and ( is a factor of a, .

3
To get a feeling as to why this theorem is true, suppose E is a root of

a,x’ +a,x* +ax+a, =0.

3)" _(3) . (3 NN
Then, a, > +a, 5 +a, > +a, =0 which implies that

27a, 9a, 3a,

3 + T + 7 +a,=0 multiplying both sides by 8
278, +18a, +128;, = —88....c.cccviireiiiiie e, @
27a; =—188, =128, —88;.....cccervrerrieeiiee e (2)

If we look at equation (1), the left hand side is divisible by 3, and therefore the right hand side must also
be divisible by 3. Since 8 is not divisible by 3, a, must be divisible by 3. From equation (2), a, must be
divisible by 2.



Example 3.24: Find all the zeros of the function p(x) = 2x* + 3x* —23x —12.

Solution: According to the Rational Root Theorem, if P is a rational root of the given equation, then p

q

must be a factor of —12 and  must be a factor of 2. Thus, we have

possible valuesof p: 1, +2, £3, +4, £6, £12

possible values of q: £1, +2

possible rational roots —: +1, i%, +2, £3, ig, +4 +6, +12

q

We may check these possible roots by substituting the value in p(X). Now p(1)=-30 and
p(-1) =12. Since p(l) is negative and p(—1) is positive, by location theorem, p(X) has a zero
between —1 and 1. Since P(— %) =0, then (X+%) is a factor of p(X) . Using long division, we obtain

p(x) = 2x° +3x* —23x —12 = (X + 1)(2x* + 2x — 24)
=2(x+3)(x+4)(x-3)

Therefore, the zeros of p(x) are —%, —4 and 3.

e Rational Functions and their Graphs

n() where both n(x) and d(x) are polynomials and

A rational function is a function of the form f(X) =
d(x)

d(x) 0.

X° +2x3 —x+1

and f(x)= are
X +5X

3 x-1
Example 3.25: The functions f(X)=—-—, f(X)=—;
X+5 X7 =

examples of rational function.

Note that the domain of the rational function f(X) = % is {x:d(x) =0}
X



3x-5

Example 3.26: Find the domain and zeros of the function f (x) = Z 12
X" —=X-

Solution: The values of X for which x> —=x—12=0 are excluded from the domain of f.Since

x> —x—12 = (x—4)(x+3), we have Dom(f)={x: x = —3,4}. To find the zeros of f(X), we solve

the equation

%=O<:>n(x)=0&(1(x)¢o

Therefore, to find the zeros of f(X), we solve 3Xx—5=0, giving x = g Since g does not make the

denominator zero, it is the only zero of f(X).
The following terms and notations are useful in our next discussion.

Given a number a,

e X approaches a from the right means x takes any value near and near to @ but x > a. This is

denoted by: x—a" (read: ‘x approaches a from the right’ ).

For instance, x—> 1" means x can be 1.001, 1.0001, 1.00001, 1.000001, etc.

e X approaches a from the left means x takes any value near and near to a butx<a.

This is denoted by: x—a~ (read: ‘x approaches a from the left’ ).
For instance, x—>1" means x can be 0.99, 0.999, 0.9999, 0.9999, etc.

e x— (read: ‘x approaches or tends to infinity’) means the value of x gets indefinitely larger and
larger in magnitude (keep increasing without bound). For instance, x can be 10°, 10%°, 10", etc.

e x— —oo (read: ‘x approaches or tends to negative infinity’) means the value of x is negative and gets
indefinitely larger and larger negative in magnitude (keep decreasing without bound). For instance, x
can be -10°, -10%°, —10%, etc.

The same meanings apply also for the values of a function f if we wrote f(x)—>w or f(x)—>—w. The
following figure illustrates these notion and notations.



y “T y—>© i
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X—> o0 x—>a | x—>a" X% |
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Fix)— —0, i .

l y——a 'l fix)> —oo, asx—a

)

Fig. 2.1. Graphical illustration of the idea of x—a®, f(x)—>», etc.

We may also write f(x)—>b (read: ‘f(x) approaches b’) to mean the function values, f(x), becomes

arbitrarily closer and closer to b (i.e., approximately b) but not exactly equal to b. For instance, if

1 1
f (X) ==, then f(x)>0 as x—x; i.e., = is approximately 0 when x is arbitrarily large.
X X

The following steps are usually used to sketch (or draw) the graph of a rational function f{(x).

1.
2.

3.

Identify the domain and simplify it.

Find the intercepts of the graph whenever possible. Recall the following:

e y—intercept is the point on y-axis where the graph of y = f(x) intersects with the y-axis. At this
point x=0. Thus, y =f(0), or (0, f(0) ) is the y-intercept if 0eDom(f).

e x—intercept is the point on x-axis where the graph of y = f(x) intersects with the x-axis. At this
point y=0. Thus, x=a or (a, 0) is x-intercept if f(a)=0.

Determine the asymptotes of the graph. Here, remember the following.

Vertical Asymptote: The vertical line x=a is called a vertical asymptote(VA) of f(x) if
i) agdom(f), i.e., f is not defined at x=a; and
ii) flx)=> or f{x)= —o when x—a*or x—a . In this case, the graph of fis almost vertically rising
upward (if f(x)—>) or sinking downward (if f(x)—>—) along with the vertical line x=a when x
approaches a either from the right or from the left.



Example 3.27: Consider f (x) = ;n, where a >0 and n is a positive integer.
(x—a)

Obviously agDom(f). Next, we investigate the trend of the values of f(x) near a. To do this, we consider
two cases, when n is even or odd:

Suppose n is even: In this case (x —a)”> 0 for all xeR\{a}; and since (x —a)" =0 as x—>a" or x—=a~ .

Hence, f(x)= — 00 as x—a’ or x—>a . Therefore, x=a is a VA of f(x). Moreover, y= 1/a" or (0,

(x-a)"
1/d") is its y-intercept since f(0)=1/a". However, it has no x-intercept since f(x) >0 for all x in its domain
(See, Fig. 2.2 (A)).

Suppose n is odd: In this case (x — a)™ 0 for all x>a and 1/ (x — a)” = when x—a" as in the above
case. Thus, x=a is its VA. However, 1/(x—a)"— —o when x—a” since (x — a)"< 0 for x<a. Moreover, y=—
1/d" or (0,-1/a") is its y-intercept since f(0) =—-1/a". However, it has no x-intercept also in this case.
(See, Fig. 2.2 (B)).

1
Note that in both cases, f(x)= ~—> 0as x—o00r x— —o0.
(x-a)

A

y !

é -1/a !
'X=q x=a

Fig. 2.2 (A) Fig. 2.2 (B)
n(x) . .
Remark: Let f(X) =—— be arational function. Then,

1. if d(a) =0and n(a) # 0, thenx=aisaVAoff .

2. if d(a) =0=n(a), then x=a may or may not be a VA of f. In this case, simplify f(x) and look for VA of

the simplest form of f.



e Horizontal Asymptote: A horizontal line y=b is called horizontal asymptote (HA) of f(x) if the value of
the function becomes closer and closer to b (i.e., f(x)—>b)as x— or as x— —oo.

In this case, the graph of f becomes almost a horizontal line along with (or near) the line y=b as x—w

and as x—>—0. For instance, from the above example, the HA of f(X)= is y=0 (the x-axis) ,

(x—a)"
for any positive integer n (See, Fig. 2.2).

n(x)

Remark: A rational function f(x) = m has a HA only when degree(n(x)) <degree(d(x)).
X

In this case, (i) If degree(n(x)) <degree(d(x)), then y =0 (the x-axis) is the HA of f.

n n-1
ax' +a X' +--+aXxX+a,

(i) If degree(n(x)) =degree(d(x))=n, i.e., f(X)= X" 10, 4+ B Xty ,

a
theny = b—” is the HA of f.

n

e Oblique Asymptote: The oblique line y=ax+b, a=0, is called an oblique asymptote (OA) of f if the
value of the function, f(x), becomes closer and closer to ax+b(i.e., f(x) becomes approximately ax+b)
as either x—»>w or x— —0. In this case, the graph of f becomes almost a straight line along with (or
near) the oblique line y=ax+b as x— and as x— —oo.

n(x)

Note: A rational function f(x)= m has an OA only when degree(n(x)) = degree(d(x)) + 1. In this case,
X
using long division, if the quotient of n(x) +d(x) is ax +b, then y=ax+b isthe OA of f.

2
Example 3.28: Sketch the graphs of (a) f(x)= XLi () g(x)= %XIZ
X— X —

Solution: (a) Since x—1=0 at x=1, dom(f) = R\{1}.

e |Intercepts: y-intercept: x=0=y=f(0)=-2. Hence, (0, —2) is y-intercept.
x-intercept: y=0 =x+2=0 =x=-2. Hence, (-2, 0) is x-intercept.

o Asymptotes:
= VA: Since x—1=0 atx=1 and x+2#0 at x=1, x=1is VAof f. In fact, if x—>1", then x+2 3 but the
denominator x—1 is almost 0 (but positive).
Consequently, f(x)—>w as x—>1".

Moreover, f(x)— —ooas x—1" (since, if x—>1" then x—1 is almost 0 but negative ) .

(So, the graph of f rises up to +oo at the right side of x=1, and sink down to —oo at the left side of
x=1)



= HA: Note that if you divide x+2 by x—1, the quotient is 1 and remainder is 3. Thus,

f(x)= X+2 =1+ 3 . Thus, if x>0 (or x— —0), then i—>O so that f(x)—>1. Hence,
X_

x-1 x—1

y=1is the HA of f.
Using these information, you can sketch the graph of f as displayed below in Fig. 2.3 (A).
(b) Both the denominator and numerator are 0 at x=1. So, first factorize and simplify them:

X*+3x+2=(x+2)(x+1) and x°-1=(x-1)(x+1). Therefore,

(@__x2+3x+2 _ (x+2)(x+1)
W= T T )

__X4—2
X—1"

x#=-1

(So, dom(g)= R\{1,-1})

This implies that only x=1 is VA.

X+2 X +
Hence, the graph of g(X) =1 X # —1, is exactly the same as that of f(X) =

2
1 except that

g(x) is not defined at x=—-1. Therefore, the graph of g and its VA are the same as that of f except that
there should be a ‘hole’ at the point corresponding to x= —1 on the graph of g as shown on Fig. 2.3(B)

below.
A A
i E #-1
y=1 (HA) : y=1 5
\ i . i i >
JF\\ : g -2 E
i) ! / 2] i
ile ‘hole’ ile
X+2
Fig2.3 (A) f(x)=X+2 (B)y=ﬁ, X # -1

x-1

Exercise 3.4



10.
11.

Perform the requested divisions. Find the quotient and remainder and verify the Remainder
Theorem by computing p(a) .

a) Divide p(X)=x*—-5x+8 by x+4

b) Divide p(x) =2x*—7x* +x+4 by x—4

c) Divide p(x)=1-x* by x—-1

d) Divide p(x) =x>—2x*-3 by x+1

Given that p(4) =0, factor p(X) = 2x> —11x* +10x + 8 as completely as possible.
Given that r(x) = 4x® —x*> —36x+9 and r(%)=0, find the remaining zeros of r(x).

Given that 3 is a double zero of p(X) = x* —3x® —19x* +87x—90, find all the zeros of P(X)

a) Write the general polynomial p(X) whose only zeros are 1, 2 and 3, with multiplicity 3, 2 and

1 respectively. What is its degree?
b) Find p(X) described in part (a) if p(0)=6.

If 2—3i isarootof P(x) =2x%—5x* +14x + 39, find the remaining zeros of p(x).

Determine the rational zeros of the polynomials

a) p(x)=x®—-4x*-7x+10

b) p(x)=2x>—-5x*—-28x+15

o) p(x)=6x°+x>—4x+1

Find the domain and the real zeros of the given function.

3 X-3 (x—3)? x> —16
a) f(x)= b) gxX)=———— ¢) f(X)=——F— d) f(X)=
) T x> -25 ) 9() x> 4x —12 ) 1) x® —3x% +2x ) 109 X +4
Sketch the graph of

2 2
a) f(x) =122 o) F0=X"1  gr=te2 4) £(x) =
X—3 X X —4
3_ —

Determine the behavior of f (x) =$);3 when X is near 3.

The graph of any rational function in which the degree of the numerator is exactly one
more than the degree of the denominator will have an oblique (or slant) asymptote.
a) Use long division to show that

X>—X+6 8
=f(X)=—F——=x+1+—
y () X—2 X—2

b) Show that this means that the line y =x+1 is a slant asymptote for the graph and
sketch the graph of y = f(x).



3.5Definition and basic properties of logarithmic, exponential, trigonometric
and hyperbolic functions and their graphs

After completing this section, the student should be able to:

define exponential, logarithmic, trigonometric and hyperbolic functions

understand the relationship of the exponential and logarithmic functions

define the hyperbolic functions and be familiar with their properties

sketch the graph of exponential, logarithmic, trigopnometric and hyperbolic functions

use basic properties of logarithmic, exponential, hyperbolic and trigonometric functions
to solve problems

VV VYV V

e Exponents and radicals

“«

Definition 3.14: For a natural number N and a real number X, the power X" , read “ the n‘“ power of X” or

X raised to N”, is defined as follows:
n

X = XeXeeooo X

%,_/
n factorseach equalto x

In the symbol X", X is called the base and N is called the exponent.

For example, 2° =2x2x2x2x2=32.

Based of the definition of X", N must be a natural number. It does not make sense for N to be
negative or zero. However, we can extend the definition of exponents to include 0 and negative
exponents.

Definition 3.15: (Zero and Negative Exponents)

Definition of zero Exponent Definition of Negative Exponent
1
0 _ -n __
x° =1 (x=0) X" =% (x=0)

Note: 00 is undefined.




1
As a result of the above definition, we have —- = X" . We have the following rules of exponents for

integer exponents:

Rules for Integer Exponents

1. Xn.Xm:Xm-m 4. (Xy)n:Xny”
2. (x")"=x" 5. X—m:x””“
X
x) X"
3. |—| == (y=0)
3=

Next we extend the definition of exponents even further to include rational number exponents. To do
this, we assume that we want the rules for integer exponents also to apply to rational exponents and

1
then use the rules to show us to define a rational exponent. For example, how do we define az?

Consider 9%.

1
2

1 1 1
If we apply rule 2 and square 9%, we get (92)2 =92 =9 . Thus, 97 is a number that, when squared,

yields 9. There are two possible answers: 3 and — 3, since squaring either number will yield 9. To avoid
1
ambiguity, we define a? (called the principal square root of a) as the non-negative quantity that, when

squared, yield a. Thus, 9% =3.

We will arrive at the definition of a® in the same way as we did for a?. For example, if we cube 8°, we
1 3 1 1
get (83)3 =8% =8. Thus, 83 is the number that, when cubed, yields 8. Since 23 =8 we have 8° =2.

Similarly, (— 27)% =—3. Thus, we define a% (called the cube root of @) as the quantity that, when
cubed yields a.

1

Definition 3.16: (Rational Exponent a")
1
If N is an odd positive integer, then a" = b if and only if b"=a

1
If N is an even positive integerand @ >0, then a" :|b| if and only if b"=a




1 1
We call a" the principal n" root of a. Hence, a" is the real number (nonnegative when N is even)

that, when raised to the nt power, yields a. Therefore,
(16)% =4 since 4° =16

(—125)% = -5 since (-5)° =-125

1) 1 . 1)“ 1

— | ==since| =| =—

81 3 3 81
27% =3 since 3* =27

1
(—16)¢ is not a real number

1
Thus far, we have defined a", where N is a natural number. With the help of the second rule for

m
exponent, we can define the expression a", where M and N are natural numbers and 7 is reduced to

lowest terms.

Definition 3.17: (Rational Exponent a" )

1 m 1
If a" isareal number, then A" = (a”T(i.e. the nt root of a raised to the m" power)

We can also define negative rational exponents:

Example 3.29: Evaluate the following



a) 27° b) 36 ¢) (-32)

Solution: We have

a) 278 =rf =3 =9

p) 367=1 =1
6
1

N =

36

0) (-32)° = ! L -1

(-32)° QAQﬁfzcif:_g

Radical notation is an alternative way of writing an expression with rational exponents. We define for

real number a, the n™ root of @ as follows:

1
Definition 3.18 ( n" root of @ ): Q/E= a",where N is a positive integer.

The number % is also called the principal n" root of a. Ifthe N root of & exists, we have:

For @ areal number and N a positive integer,

el {|a|, if nis even

a, Iif nisodd

For example, 3/5° =5 and 4 (-3)* =3.

e Exponential Functions

In the previous sections we examined functions of the form f(X)= X", where N is a constant. How is

this function different from f(x)=n".

Definition 3.19: A function of the form Yy = f(X) = b*, where b>0 and b#1, is called an exponential

function.




1 X
Example 3.30: The functions f(x)=2%, g(x)=3" and h(X) =(§j are examples of exponential

functions.

As usual the first question raised when we encounter a new function is its domain. Since rational
exponents are well defined, we know that any rational number will be in the domain of an exponential

function. For example, let f(X)=3".Thenas X takes on the rational values X =4, -2, 1 and ¢, we

have

f(4)=3"=3.3-3.3=81 f(2)=32=3=1

f(1)=3 =43 f(4)=3 =¥3" =%/81

Note that even though we do not know the exact values of \/§ and /81, we do know exactly what

they mean. However, what about f (X) for irrational values of X ? For instance, f (\/E) =372 =9

We have not defined the meaning of irrational exponents. In fact, a precise formal definition of b*
where X is irrational requires the ideas of calculus. However, we can get an idea of what 3‘5 should be

by using successive rational approximations to «/2 . For example, we have

1.414 <2 <1.415

Thus, it would seem reasonable to expect that 3 < 3‘/E < 3% Since 1.414 and 1.415 are rational

numbers, 3"*** and 3"**° are well defined, even though we cannot compute their values by hand. Using
a calculator, we get 4.7276950 < 372 < 4.7328918. If we use better approximations to \/E, we get
L4142  3V2 314143 Using a calculator again, we get 4.7287339 < 372 < 4.7292535. Computing 3"
directly on a calculator gives 3Y2 ~ 4.7288044 . This numerical evidence suggests that as X approaches

\/E, the values of 3" approach a unique real number that we designate by 3‘5, and so we will accept
without proof, the fact that the domain of the exponential function is the set of real numbers.



The exponential function Y = b* ,where b >0 and b #1, is defined for all real values of X . In addition all

the rules for rational exponents hold for real number exponents as well.

Before we state some general facts about exponential functions, let’s see if we can determine what the
graph of an exponential function will look like.

Example 3.31:
1. Sketch the graph of the function y =2* and identify its domain and range.

Solution: To aid in our analysis, we set up a short table of values to give us a frame of

reference.

X y

-3 -3 =1

) 92 =1

-1 o1 —1

0 2°=1

1 2'=2

2 22 — >
3 2 -8 X

With these points in hand, we draw a smooth curve through the points obtaining the graph appearing

above. Observe that the domain of y =2% is IR, the graph has no X —intercepts, as

X — 400, the Y values are increasing very rapidly, whereas as X — —o0, the VY values are getting

closer and closer to 0. Thus, X —axiS is a horizontal asymptote, the Y —intercept is 1 and the range of

y = 2% is the set of positive real numbers.



2. Sketch the graph of y = f(x) =(%) :

Solution: It would be instructive to compute a table of values as we did in example 1 above (you are
urged to do so). However, we will take a different approach. We note that

2%
f (—X), we can obtain the graph of y =27* by reflecting the graph of y =2* about the Y —axis.

y = f(x) =(%) L 27 1f f(x)=2%, then f(—x)=27". Thus by the graphing principle for

A
y

v=(3)

(-1,2)XT2

45\\‘—————=

-1 0 1 X

Here again the X —axis is a horizontal asymptote, there is no X —intercept, 1 is Yy —intercept and the

range is the set of positive real numbers. However, the graph is now decreasing rather than increasing.

The following box summarizes the important facts about exponential functions and their graphs.

The Exponential function y = f(x) =b”

1. The domain of the exponential function is the set of real numbers
2. The range of the exponential function is the set of positive real numbers

3. The graph of y=b* exhibits exponential growth if b>1 or exponential decay if
O<b<1.
The y—intercept is 1.

The X —intercept is a horizontal asymptote
6. The exponential function is 1 — 1. Algebraically if b* =b”, then x=y

Example 3.32: Sketch the graph of each of the following. Find the domain, range, intercepts, and
asymptotes.

a) y=3"+1 b) y=3"" c) y=-9"+3



Solution:

a) To get the graph of y=3"+1. We start with the graph of y =3, which is the basic
exponential growth graph, and shift it up 1 unit.

1 . From the graph we see that
y=s - Dom(f)=%
- Range(f)=(1x)
- The y—interceptis 2
The line y=1 is a horizontal

2
P N S . asymptote

10

b) To get the graph of y =3**"", we start with the graph of y =3*, and shift 1 unit to the left.

4 From the graph we see that

x+1

y=3 - Dom(f)=%R
- Range(f)=(0,)
- The y—interceptis 3

The line y=0 is a horizontal
/' asymptote

N

v

c) To get the graph of y=-97"+3, we start with the basic exponential decay y=97". We
then reflect it with respect to the x —axis, which gives the graph of y=-97". Finally,
we shift this graph up 3 units to get the required graph of y=-97"+3.

A 4
A Y Y
Y
1,94 y=3
ryT —a— 2 ERPEEE
2 ;\= 9743
1




From the graph of Yy =—-97" + 3, we can see that Dom(h) =R, Range(h) = (—x,3), theline y =3 is

a horizontal asymptote, 2 is the y —intercept and X = —% is the X —intercept.

Remark: When the base b of the exponential function f(X)=Db" equals to the number €, where

e =2.7182---, we call the exponential function the natural exponential function.

e Logarithmic Functions

In the previous subsection we noted that the exponential function f(X) =b* (where b>0 and b#1)

is one to one. Thus, the exponential function has an inverse function. What is the inverse of f(X)=b*?

To find the inverse of f(X)=Db", let’s review the process for finding an inverse function by comparing
the process for the polynomial function y = X3 and the exponential function Y = 3”. Keep in mind that
X is our independent variable and VY is the dependent variable and so whenever possible we want a

function solved explicitly for y .

To find the inverse of Y = x° To find the inverse of ¥ = 3"
y=x* Interchange X and Y y =3" Interchange X and Y
X=Yy> solvefor Yy x=3" solvefor y

y=3x =

There is no algebraic procedure we can use to solve X =3” for Y. By introducing radical notations we
could express the inverse of ¥ = x® explicitly in the form y= i/; . In words, y3 =Xand y= 3{/; both

mean exactly the same thing: Y is the number whose cube is X . Similarly, if we want to express X =3’
explicitly as a function of X, we need to invent a special notation for this. The key idea is to take the

equation X =3 and express it verbally.

X = 3% means Y is the exponent to which 3 must be raised to yield X



We introduce the following notation, which expresses this idea in a much more compact form.

Definition 3.20: For b >0 and b#1, we write Y =109, X to mean Y is the exponent to which b must

be raised to yield X . In other words,

x=b’ < y=log, x

Weread y=1log, X as“ Y equals the logarithm of X to the base b”.

REMEMBER: Y = Iogb X is an alternative way of writing X = b”

When an expression is written in the form X =DbY, it is said to be in exponential form. When an
expression is written in the form y =1log, X, it is said to be in logarithmic form. The table below

illustrates the equivalence of the exponential and logarithmic forms.

Exponential form Logarithmic form
4° =16 log,16 =2
2 =16 log,16=4
5% =21 log, s = -3
6 =6 log, /6 =1
7° = log,1=0

Example 3.33:

1. Write each of the following in exponential form.
a) I093é =-2 b) log,s2=1%

ENT

1
Solution: We have a) log,* =—2 means 37 =1 andb) log,;2=1 means 16

I
N

2. Write each of the following in logarithmic form.
a) 10°=0001  b) 27° =9



Solution: We have a) 10 =0.001 means log,,0.001=-3

b) 27° =9 means log,, 9 =2

3. Evaluate each of the following.
a) log,81 b) log, &

Solution:

a) To evaluate log,81, we let t =1log,81, and then rewrite the equation in exponential

form, 3' =81. Now, if we can express both sides in terms of the same base, we can
solve the resulting exponential equation, as follows:

Let t=log,81 Rewrite in exponential form
3'=81 Express both sides in terms of the same base
3 =3 Since the exponential functionis 1 — 1
t=4

Therefore, l0g,81=4.

b) We apply the same procedure as in part (a).

Let t=1log, & Rewrite in exponential form
8' =24 Express both sides in terms of the same base
8' =87 Since the exponential function is 1 — 1
t=-2

Therefore, log, & =-2.

As was pointed out at the beginning of this subsection, logarithm notation was invented to
express the inverse of the exponential function. Thus, log, x is a function of x. We usually

write f(x)=1log, x rather than writing f(x)=1log,(x) and use parenthesis only when needed
to clarify the input to the log function. For example,

If f(x)=log,(4—x), then f(-1)=Ilog.(4—-(-1)=Ilog;5=1, whereas if f(x)=4-log;x,
then f(-1)=4-log.(-1), which is undefined.

Example 3.34: Given f(x)=Ilog; x , find

a) (25 b) f(¥%) c) f(0) d) f(-125)
Solution:
a) f(25)=log,25=2 (since 5° =25)

b) f(L)=log,%=-2 (since 57 =%)



c) f(0)=1log,0 is not defined (what power of 5 will yield 0?). We say that O is not in the

domain of f .

d) f(-125)=log.(—125) is not defined (what power of 5 will yield -1257?). We say that -

125 is not in the domain of f .

a) y=log,x

yl

b) y=log; x

Acknowledging that the logarithmic and exponential functions are inverses, we can derive a great deal
of information about the logarithmic function and its graph from the exponential function and its graph.

Example 3.35: Sketch the graph of the following functions. Find the domain and range of each.

Solution: a) Since y=1log, X is the inverse of y =3, we can obtain the graph of y=1Ilog, X by

reflecting the graph of y =3* about the line Yy =X, as shown below.

b) To get the graph of y=1log, x, we reflect the graph of y= (l)X about the line y=xas

shown below.

2




Taking note of the features of the two graphs we have the following important informations about the

graph of the log function:

The Logarithmic Function y =l0g, X
1. Its domain is the set of positive real numbers
2. ltsrange is the set of real numbers.
3. Its graph exhibits logarithmic growth if b >1 and logarithmic decay if O0<b<1.
4. The Xx— interceptis 1. There isno Yy —intercept.
5. The y—axis is a vertical asymptote.
Example 3.36:
1. Sketch the graph of f(x)=1+log;(x—2). Find the domain, range, asymptote and

intercepts.

Solution: We can obtain the graph of y=1+log,(x—2) by applying the graphing
principle to shift the basic logarithmic growth graph 2 units to the right and 1 unit up.

yA

A logs(x—2)

»
»

3 X




We have Dom(f)={x:x>2}, Range(f)=%R and the graph has the line x=2 as a

vertical asymptote. To find the intercept, we set y =0 and solve for x. Setting y=0

and solving for x, we will obtain x =%. Thus, the X —interceptis %.
2. Find the inverse function for

a) y=f(x)=3"+4 b) y=g(x)=log,(x-2)

Solution: Following the procedure for finding an inverse function, we have

(a y=3"+4  Interchange X and Y (b) Y=10g,(X—2) Interchange X and Y
x=3"+4  solve explicitly for Y X =10g,(y—2) Write in logarithmic form
X—4=3"  Write in logarithmic form y—-2=3" solve explicitly for Y
y =log,(x—4) y=3"+2

Thus, T (X)=log,(x—4) Thus, g (X) =3" +2

The following table contains the basic properties of logarithm:

Properties of logarithm

Assume that D,U and V are positive and b #1. Then

1. log,(uv) =log, u+log, v
In words, logarithm of a product is equal to the sum of the logs of the factors.

2. log,(¥)=Ilog,u—log,Vv
In words, the log of a quotient is the log of the numerator minus the log of the
denominator.

3. Iogb(ur)z rlog, u
In words, the log of a power is the exponent times the log.

4. log,(b*)=xlog,b=x



5. b"%* =x

6. log,c= log, ¢
lo

if a is positive and a =1.

a

Example 3.37:
1. Express in terms of simpler logarithms.
a) log, (x°y) b) log, (x° +y) ) log, ()

Solution:

a) log, (x*y) =log, x* +log, y = 3log, x +log, y

b) Examining the properties of logarithms, we can see that they deal with log of a
product, quotient and power. Thus, log,(x® +Yy) which is the log of a sum cannot be
simplified using log properties.

c) We have

X) 1 1
log, (2 )= log, \/xy ~log, (°) = log, (xy )} 3log, z = (log, x-+log, y) ~3log, 2.

2. Show that log, 1 =—log, 2.

Solution: We have log,  =log,1-log, 2=0-log,2=-log, 2.
The logarithmic function was introduced without stressing the particular base chosen. However, there
are two bases of special importance in science and mathematics, namely, b =10 and b=e.

Definition 3.21: (Common Logarithm)
f(x)= |Og10 X is called the common logarithm function. We write |Og10 x=logx.

The inverse of the natural exponential function is called the natural logarithmic function and has its own
special notation.

Definition 3.22: (Natural Logarithm)
f (x) =log, X is called the natural logarithmic function. We write log, X =1InX.




Example 3.38:

1. Evaluate log1000
Solution: Let a =10og1000. Then, a = log,,1000 = log,,(10%) = 3.
2. Find the inverse function of f(x)=e* +1.

Solution: Let y=e*+1 Interchange x and y
x=¢e’+1 Solve for y
x—1=¢’ Rewrite in logarithmic form
y=In(x-1)

Thus, f(X)=In(x-1).

e Trigonometric functions and their graphs

For the functions we have encountered so far, namely polynomial, rational and exponential functions, as
the independent variable goes to infinity the graph of each of these three functions either goes to
infinity(very quickly) for exponential functions or approaches a finite horizontal asymptote. None of
these functions can model the regular periodic patterns that play an important role in the social,
biological, and physical sciences: business cycles, agricultural seasons, heart rhythms, and hormone level
fluctuations, and tides and planetary motions. The basic functions for studying regular periodic
behaviour are the trigonometric functions. The domain of the trigonometric functions is more naturally
the set of all geometric angles.

Angle Measurement

An angle is the figure formed by two half-lines or rays with a common end point. The common end point

is called the vertex of the angle.

In forming the angle, one side remains fixed and the other side rotates. The fixed side is called the initial
side and the side that rotates is called the terminal side. If the terminal side rotates in a counter



clockwise direction, we call the angle positive angle, and if the terminal side rotates in a clockwise
direction, we call the angle negative angle.

Initial Side Terminal Side
What attribute of an angle are we trying to measure when we measure the

size of an angle? A moment of thought will lead us to the conclusion that when we measure an angle we
are trying to answer the question: Through what part of a complete rotation has the terminal side

rotated?

We will use degree (°) as the unit of measurement for angles. Recall that the measure of a full round

angle (full circle) is 360°, straight angle is 180°, and right angle is 90°.

An alternative unit of measure for angles which will indicate their size is the radian measure. To see the
connection between the degree measure and radian measure of an angle, let us consider an angle &
and draw a circle of radius I with the vertex of @ atits center O. Let S represent the length of the
arc of the circle intercepted by 2@ (as shown below).

Basic geometry tells us that the central angle & will be the same fractional part of one complete

rotation as S will be of the circumference of the circle. For example, if @ is 1—10 of a complete rotation,



then S will be ﬁ of the circumference of the circle. In other words, we can set up the following

proportion:

0 B S S
1 complete rotation circumference of circle 2ar

Thus, we have the following conversion formula:

@indegrees @in radians
180" b2

Example 3.39:

1. Convert each of the following radian measures to degrees.
a) § b) ¥

Solution: a) By the conversion formula, we have 1890° = which implies that 8 =30".
T
g
b) Again using the conversion formula, we get 80~ = which implies that 6 =108".
T

2. Convert to radian measures
a) 90° b) 270°

Solution: a) Let @ represent the radian measure of 90°. Using the conversion formula, we obtain:

6 90°
— =——, which implies that 8 = % )

7 180°

b) Rather than using the conversion formula, we notice that 270" =3(90°). In part (a) we found that

90° = %, and so we have 270° = 377[

Y
. : . . I P(x,y) _
To define the trigonometric functions, we will view all angles in the
context of a Cartesian coordinate system: that is, given an r angle &, we begin by
ﬂ\\

X




putting @ in standard position, meaning that the vertex of @ is placed at the origin and initial side of

@ is placed along the positive X —axis . Thus the location of the terminal side of & will, of course,
depend on the size of 4.

A
L

v

We then locate a point( other than the origin) on the terminal side of @ and identify its coordinates
(X, Y) and its distance to the origin, dented by I.Then, I is positive.

With @ in standard position, we define the six trigonometric functions of & as follows:

Definition 3.23

Name of function Abbreviation Definition
Sine @ sin@ sinezl
r
X
Cosine @ cos & cosf =—
r
Tangent & tan@ tand = Y
X
r
Cosecant @ cscéo cscl =—
y
r
Secant @ sec @ secld =—
X
X
Cotangent & cotd cotd=—
y




. . ) S . . .
Recall that the radian measure of an angle is defined as @ = —, where @ is angle in radians
r

S is the length of the arc intercepted by & and I is the length of the radius. Since S and I are both
S

lengths, the quotient — is a pure number without any units attached. Thus, any angle can be
r

interpreted as a real number. Conversely, any real number can be interpreted as an angle. Thus, we can
describe the domains of the trigonometric functions in the frame work of the real number systems. If we
let f(€)=sin@, the domain consists of all real numbers @ for which sin@ is defined. Since

y

sin@ == and I is never equal to zero, the domain for sin@ is the set of all real numbers. Similarly,
r

X
the domain of f (@) =cosé =— is also the set of all real numbers.
r

e Thegraphof y=sinéd

To analyze f(6)=sin@, we keep in mind that once we choose a real number @, we draw the angle,

in standard position, that corresponds to @ . To simplify our analysis, we choose the point (X, Y) on the

terminal side so that r =1.Thatis, (X, Y) is a point on the unit circle X2 + y2 =1. Note that
A

sinezlzy. (0,1)
1 (xy)

5]

(—1,0)\\/(1,0)

(01_1)

A
v




As the terminal side of @ moves through the first quadrant, Y increases from 0 (when € =0) to

1(when @ = % ). Thus,as _ increasesfromOto Z, y= Sin@ steadily increases from 0 to 1.

As @ increases from Z to 7, Yy =SiN6 decreases form 1 to 0. A similar analysis reveals that as @

increases from 7 to 37”, sin@ decreases from 0to—1; and as @ increases from 37” to 27, sin@

increases from—1to 0.

Based on this analysis, we have the graph of f(6)=sIn# in the interval [0,27] as show below.

‘L_.l
y =sin X

Since the values of f(6)=sin@ depend only on the position of the terminal side, adding or subtracting
multiples of 27z to @ will leave the value of T () =SIin# unchanged. Thus, the values of
f (6) =sin@ will repeat every 27 units. The complete graph of f(6)=Sin& appears below.

~A_ AN A,
AN O

The graph of Y =SINX , which is called the basic sine curve.

e The graph of y=cos &



Applying the same type of analysis to f (8) =Cc0sé, we will able to get a good idea of what its graph

looks like. The figure below shows the angle corresponding to & as it increases through quadrant |, Ii, IlI
and IV.

X
Keeping in mind that cosé@ = I = X, we have the following:

As @ increases from0to Z, x=cosd decreases from 1 to O.

1 z,

2. As @ increases from Z to 7, x=cosé decreases from0 to — 1.
3. As @ increases from 7z to %, x=cosé increases from—1to 0.
4

As @ increases from 3 to 2z, x=cos@ increases from 0 to 1.

Based on this analysis, we have the graph of f(68)=C0sé as shown below:

NN DN AN

e Thegraphof y=tand

y

Since tan@ = = is undefined whenever X =0, tan@ is undefined whenever the terminal side of the
X

angle corresponding to @ falls on the Y —axis . This happens for 8 = %, to which we can add or
subtract any multiple of 77 that will again bring the terminal side back to the Y —axis . Thus, domain of
tan@ is {0: 6 #Z +nx}, where N is an integer.

1. As @ increases from0Oto %, X decreases from1toOand y increases fromO to 1;
therefore, tan@ =< increases from0to .
2. As 0 increases from Z to 7, X decreases from0Oto—1 and Yy decreases from 1 to O;

therefore, tand =2 increases from —co to 0.



3. As @ increases from 7z to %, X increases from—1to0and y decreases fromO0 to —
1; therefore, tan@ =< increases from0to .

4. As @ increases from 3 to 2z, X increases from 0 toland Yy increases from -1 to
0; therefore, tan@ =< increases from —oo to 0.

You may want to add some more specific values to this analysis. In any case, we get the following as the
graph of the tangent function.

YA

A

v

Definition 3.24: (Periodic Function)

Afunction Y = f(X) is called periodic if there exists a number P such that f(X+ p) = f(X) forall X in
the domain of f . The smallest such number P iscalled the period of the function

A periodic function keeps repeating the same set of Y —Vvalues over and over again. The graph of a

periodic function shows the same basic segment of its graph being repeated. In the case of sine and
cosine functions, the period is 27 . The period of the tangent functionis 7.



Definition 3.25: (Amplitude of a periodic function)
The amplitude of a periodic function f (X) is

A= %[ maximum value of f (X) —minimum value of f(X)]

Thus, the amplitude of the basic sine and cosine function is 1.

The portion of the graph of a sine or cosine function over one period is called a complete cycle of the

graph. In other words, the minimal portion of a sine or cosine graph that keeps repeating itself is called a
complete cycle of the graph.

Definition 3.26: (Frequency of a periodic function)

The number of complete cycles a sine or cosine graph makes on an interval of length equal to 27z is called its
frequency.

The frequency of the basic sine curve Y =SinX and the basic cosine curve Yy =C0SX is 1, because

each graph makes 1 complete cycle in the interval [0,27].

If a sine function has period of 7 (see the figure below), then the number of complete cycles its graph

. : . 2
will make in an interval of length 27 is — =4.

72
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Asine graph of period % and frequency 4

Thus if a sine function has a period of Z , its frequency is 4 and its graph will make 4 complete cycles in

an interval of length 27 .

Example 3.40: Sketch the graph of Y =SiN2X and find its amplitude, period and frequency.

Solution: We can obtain this graph by applying our knowledge of the basic sine graph. For the basic
curve, we have

sin0=0 sinz=1 sinz=0 sin¥z=-1  sin2zx=0

These quadrantal values serve as guide points, which help us draw the graph. To obtain similar guide
points for Yy = SiN2X, we ask for what values of X is

2x=0 2Xx=% 2x =1 2x =3 2x =27
and we get
_ _ _3 _
x=0 X=7 X=7 X==F X=7r

Thus, Yy =Sin2X will have the values0,1,0, —1,0at Xx=0,%,%,32 and 7, respectively. The
graph of Y =SiN2X will thus complete one cycle in the interval [0, 7], and will repeat the same values

in the interval [7,27].

:
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From this graph we see that Y =SiN2X has an amplitude of 1, a period 7, and a frequency of 2.

For convenience we summarize our discussion on the domains of the trigonometric functions in the
table.

1. f(x)=sinx Domain = All real numbers
2. f(x)=cosx Domain = All real numbers
Domain =q{X: X#Z+Nrx
3. f(x)=tanx { 2 }
Domain={ X: X#Nx}
4. f(x)=cscx , _
Domain = {X : X # >+ nz}
5. f(x)=secx
Domain = {X X# n7r}
6. f(x)=cotx o
where N is an integer

In the course of our discussion of the trigonometric functions, we have discussed two types of
trigonometric relationships: the reciprocal and quotient relationships. These relationships are examples
of trigonometric identities. In the table below we list identities that are satisfied by the trigonometric
functions.

The reciprocal Identities 1.CSCX =———

sin X
1
2.SeCX = ——
COS X
1
3. COtX=——

tan x



sin X

The quotient Identities 4. tanx =——
COS X
COS X
5. COtX=—
SIn X
.2 2
The Pythagorean Identities 6. SIN" X+COS™ X = 1

- tan® x +1=sce’x
8.1+cot? x =csc? x

The addition formula 9. (a) SIN(X + y) =sin XCcoS y + cos Xsin y
(b) SiN(X — y) =sin X cos y —Cos XSin y

10. (a) COS(X + y) =COS XCOS y —Sin Xsiny

(b) COS(X — y) =COS XCOS Y +Sin Xsin y
fanx +tany
l1-tanxtany
tanx —tany
l+tanxtany

11. (a) tan(x + y) =
(b) tan(x —y) =

The double angle formula 12. Sin2X = 25Sin X oS X
13. COS2X = €0S? X —sin® x =1—2sin®* x =2cos®* x —1

2tan x
1—tan? x

. X 1-cos x
The half-angle formula 15. SIN— =&+, | —
2 2
X 1+ cos x
16. COS— ==+ | ————
2 2
X /1 — COS X
17. tan— ==+ |———
2 1+ cos x

e Hyperbolic functions and their graphs

14. tan2x =

The hyperbolic functions are certain combinations of exponential functions, that occur in various
applications, with properties similar to those of the trigonometric functions. Among many other
applications they are used to describe the formation of satellite rings around the planets, to describe the
shape of a rope hanging from two points, and have application in relativity theory. The two basic

hyperbolic functions are the hyperbolic sine and hyperbolic cosine functions. They are defined as
follows:



Definition 3.27:

1. The hyperbolic sine function is 2. The hyperbolic cosine function is
defined by: defined by:
sinhx:% coshx =& ¢
The domain of sinhx is R. The domain of coshx isalso $R.
Remark:

1. cosh x is pronounced "kosh"x and sinhX is pronounced as "cinch" x.
2.Since € >0 forall xeR, we see that coshx >sinhx for every x eR.

et +e* e ¥ +e" e+e”
3.If f(X)zT,then f(—x)= =

= f(X).Thus, coshx isan even
2 2

function.
4. Sinhx is an odd function.

3. In contrast to sine and cosine, the hyperbolic functions are not periodic.

Example 3.28: Using the above definitions, show that

1. cosh® x—sinh? x =1
2. sinh(x + y) = cosh xsinh y +sinh x cosh y
3. sinh(x+ y) =sinhxcoshy +cosh xsinh y

Solution:
1. We have
e*+e 2_ g —e 2_ e” +2+e ) (e¥-2+e™ 1
2 2 4 4
Xty A—X-y XaY _a~Xa—Y XaY _ XY
5 sinh(x+y)=e e :ee e e :2ee 2e’"e

2 2 4

e'e’ —e*e? +e e’ —e e’ N e'e’ +e*e —e e —e
4 4

(e (S




= cosh xsinhy +sinh xcosh y

3. Left as an exercise.
e The graph of y=coshx

Since coshx is an even function, its graph is symmetric about the y—axis . Its y—
X =X

intercept is (0,1), because cosh(0) =1. As X tends to infinity, coshx :%+ ¢ tends to

X —-X

infinity because e? goes to infinity and e? approaches to 0. When X is a large

—X X

: e e
negative number coshx acts like > because 5 gets close to 0. Thus the graph of

y = cosh x looks like:

This graph can also be obtained by geometrically adding the two curves Yy =€* and y =€, and
taking half of each resulting Y —value. Observe that range of coshx is [1,00).

e The graphof y=sinhx

Since sinh X is an odd function, its graph is symmetric about the origin. The graph passes through the
X

origin because SINN(0) =0.As X gets large sinhx acts like ? and when X is a large negative

—-X

. (5] .
number, Sinh X acts like — . Thus, the graph of Yy = sinh X looks like:



Wk

V= v = sinh X

-

The remaining four hyperbolic functions are defined in terms of coshx and sinhx by

analogy with trigonometry.

sinhx e*-e™
tanhx = == (The domain of tanhX is R).
coshx e"+e
coshx e*+e™
cothx = — =— (The domain of cothx is R \{0})
sinhx e*-e
2
sechx = = (The domain of sechxis R)
coshx e*+e
1 2 _ .
cschx =— =— - (The domain of csChX is R \{0})
sinhx e*—e”




You may sketch the graphs of these four hyperbolic functions (see exercise 19).

The trigonometric terminology and notation for the hyperbolic functions stem from the fact that they
satisfy a list of identities that much resemble the familiar trigonometric identities, apart from an
occasional difference of sign.

cosh® x —sinh? x =1 (1)
1—tanh? x =sech?x 2)
coth? x —1=csch®x (3)
sinh(x + y) =sinh xcosh y +cosh xsinh y (4)
cosh(x + y) = cosh xcosh y +sinh xsinh y (5)

The trigonometric functions are sometimes called circular functions because the point (C0S#,sin @) lies
on the circle X* +y* =1 forall @ . Similarly, identity (1) tells us that the point (cosh®,sinh6) lies on

the hyperbola — y2 =1, and this is the reason for the name hyperbolic functions.
Exercise 3.5

1. Find the domain of the given function.

) f(x):eix b) g(x) =3 +1 ) h()=v2 -8 d) f(x)=—2—

2% 2
2. Sketch the graph of the given function. Identify the domain, range, intercepts, and
asymptotes.
a) y=5" b) y=9-3 c) y=1-e~* d) y=e*?
3. Solve the given exponential equation.
a) 2*'=8 b) 3% =243 c) 8" =42 d) 16%2 =1

4. Let f(x)=2".Showthat f(x+3)=8f(x).

5. Let g(x)=5". Show that g(x—2)=%g(x).

6. Let f(x)=3".Show that

f(x+2)-f(2) -
. = 4(3%).



. Evaluate the given logarithmic expression (where it is defined).
a) log, 32 c) log,(-9) e) log,(log, 243)

10.
11.

12.

13.
14.

15.

16.

17.

18.
19.

20.
21.

22.

b) log, 9 d) log, & f) 210%

If f(x)=1log,(x*—-4),find f(6) and the domain of f.
If g(x)=log,(x*—4x+3),find f(4) and the domain of g.

Show that log, x =—log, x

Sketch the graph of the given function and identify the domain, range, intercepts and
asymptotes.
a) f(x)=log,(x—-23) b) f(x)=-3+log, X c) f(x)=-log,(—x)
f (x) =3log; x
Find the inverse of f(x)=e®™",

Let f(x)=e"*.Find a function so that (f og)(x)=(go f)(x) = x.

Convert the given angle from radians to degrees

a) % b) -5

Convert the given angle from degrees to radians

a) 315° b) —40° c) 330°
Sketch the graph of

a) f(@)=secd c) f(8)=cscl

b) f(x)=1+cosx d) f(x)=sin(x+%)
Verify the following identities:

a) (sinx—cosx)(cscXx+secx) = tanx —cot x
b) sec® x—csc? x =tan® x —cot’ x

Given tan@d =3 and sin@ <0, find cosé .
Sketch the graphs of

a) f(x)=tanhx c) f(x)=cschx
b) f(x)=sechx d) f(x)=cothx
Prove the identities (2) and (3).

Find the exact numerical value of

a) sinh(In2) b) cosh(-In3)

Prove the following identities:

a) sinh(x—y)=sinhxcoshy—coshxsinhy
b) coshy(x—y)=coshxcoshy-sinhxsinhy

c) -4

e) f(@)=cotd
f) f(x)=tan2x

c) tanh(2In3)



Chapter 4: Analytic Geometry

The main topics of study in analytic geometry are straight lines and conic sections. Accordingly, by the
end of this chapter you must

e be able to derive basic equations that are representing straight lines, circles, parabolas, ellipses, and
hyperbola.
e know the main (important) properties of each of these five geometric objects.
e be able to identify equations of straight lines, circles, parabolas, ellipses, hyperbolas and sketch their
graphs.
More specific objectives are given in each section.

The major part of this chapter is conic sections. Conic sections are circles, parabolas, ellipses and
hyperbolas. They are called conic sections because they are generated when a plane cuts a right circular
double cone. Depending on how the plane cuts the cone the intersection forms a curve called a circle,
an ellipse, a parabola or a hyperbola (See, Figure 4.1).

Figure 4.1: (a) circle (b) ellipse (c) parabola (d) hyperbola

We will see that a conic section is described by a second degree equation in x and y of the form
Ax? +Cy2 +Dx+Ey+F=0,

when A, C, D, E and F are constant real numbers. In the analysis of such equations we will frequently
need the method of completing the square. Recall that completing the square is the method of
converting an equation of the form

X+ax=b to (x+h)>=c (Canyou establish the relationships between a,b and h,c ?)
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To do this :- Add (%) to both sides of the former equation.

Here recall that: | X2 +2ax+a® =(X+a)2 and | x%-2ax+a’ :(x—a)2 .

- Then complete the square of the resulting expression to get the later form.

4.1 Distance Formula and Equation of Lines

By the end of this section, you should

be able to find the distance between two points in the coordinate plane.

be able to find the coordinates of a point that divides a line segment in a given ratio.
know different forms of basic equations of a line

be able to find equation of a line and draw the line.

know when two lines are parallel.

know when two lines are perpendicular.

be able to find the distance between a point and a line in the coordinate plane.

4.1.1 Distance between two points and division of segments

If P and Q are two points on the coordinate plane, then PQ represents the line segment joining P and
Q and d(P,Q) or |PQ| represents the distance between P and Q.

Recall that the distance between points a and b on a number line is [a —b| = |b —a|. Thus, the
distance between two points P(xi, y1) and R(Xz, y1) on a horizontal line must be |x, —x;| and the
distance between Q(Xz, y2) and R(xz, y1) on a vertical line must be |y, —yi|. (See Figure 4.2).

A

y
v, Q(x;, y2)
ly2 =yl
" 3 X —x "R(x, y1)
: 274 :
2  x

Figure 4.2

To find distance |PQ| between any two points P(xs, y1) and Q(X,, y2), we note that triangle PRQ
in Figure 4.2 is a right triangle, and so by Pythagorean Theorem we get:

PQ%=1% - x 2 +ly2 -1 2 = [PQ=(xz —30)% +(y2 — y2)?

Therefore, we have the following:



Distance Formula: The distance between the points P(xy, y1) and Q(Xz, Y2) is

PQ= \/(Xz —x)2 +(y2 - y1)?

Note that, from the distance formula, the distance between the origin O(0,0) and a point P(x, y) is
0P| = /X% +y?

Example 4.1: (i) The distance between O(0,0) and P(3,4) is
OP| =32 + 42 =5,
(i1) The distance between P(1,2) and Q(3,6) is
|PQ|=\/(3—1)2 +(6-2)2 =20.
(iii) The distance between P(-1,2) and Q(5,—6) is
|PQ|:\/(5+1)2 1+ (-6-2)2 =10.

Division point of a line segment: Given two distinct points P(x3, y1) and Q(x,, y,) in the coordinate plane,
we want to find the coordinates (xo, Vo) of the point R that lies on the segment PQ and divides the
segment in the ratio rytor,; thatis

|PR| :r_l’

IRQ[ 12

where r; and r, are given positive numbers. (See Figure 4.3).

(x2, v2)

v

)I(l )I(o )I(Z X
Figure 4.3

To determine (xo, yo), we construct two right triangles APSR and ARTQ as in Figure 4.3. We then have
|PS| = xo —x1, |SR| = yo—y1, |RT| =x, —xp, and |TQ]| =y, —yo. Now since APSR is similar to ARTQ, we
have that



Xo~X _ 0 and Yo~V _ 1N
Xp—Xg I Yo—Yo I2

or  rixo—x1) =ri(x2—x) and ryo—y1) =rily.-yo).

X1r2 + Xoh and  yo = yira +yan

Solving for x, and y,, we obtain Xg =
i+ i+

Therefore, we have shown the following.

Theorem 4.1: Let P(xy, Y1) and Q(Xz, y2) be distinct points in the coordinate plane.
If R(Xo, Yo) is a point on the line segment PQ that divides the segment in the ratio
IPR| : |RQ| = r1: rp, then the coordinates of R is given by

(%o yo)z(xlrz +Xolh Yilo + YZrlJ
n+r n+r

) L o X1+X2 Yi1+Y2
In particular, the midpoint of PQ is given by 2 2

Example 4.2: Given P(-3, 3) and Q(7,8),
(i) find the coordinates of the point R on the line segment PQ such that |PR| : |[RQ| =2: 3.

(ii) find the coordinates of the midpoint of PQ.

Solution: (i) Obviously R(xo,yo) is given by

—3%x3+7%x2 3x3+8x2
b = ) :115
(0. yo) =( 2% r82)_ws)

(ii) The coordinates of the midpoint is [_ 32+ 4 3;8J = (2, 11/2).

Exercise 4.1.1

1. Find the distance between the following pair of points.
(a) (-1,0) and (3,0). (d) The origin and (—\@, \@) .
(b) (1,-2) and (1, 4). (e) (a,a) and (-a,—a)

(c) (=2,3) and (2,0) (f) (a, b) and (—a, —b)




2. If the vertices of AABC are A(1,1), B(4,5) and C(7, 1), find the perimeter of the triangle.
3. Let P=(-3,0) and Q be a point on the positive y-axis. Find the coordinates of Q if |PQ| =5.

4. Suppose the endpoints of a line segment AB are A(—1,1) and B(5, 10). Find the coordinates of point P
and Q if

(a) Pisthe midpoint of AB.

(b) Pdivides AB in the ratio 2:3 (Thatis, |AP|:|PB| =2:3 ).
(c) Qdivides AB in the ratio 3:2.

(d) Pand Qtrisect AB (i.e., divide it into three equal parts).

5. Let M(-1,3) be the midpoint of a line segment PQ. If the coordinates of P is (-5, —7), then what is
the coordinates of Q?

6. Let A(a, 0), B(0,b) and O(0,0) be the vertices of a right triangle. Show that the midpoint of AB is
equidistant from the vertices of the triangle

4.1.2 Equations of lines

An equation of a line I is an equation which must be satisfied by the coordinates (x, y) of every point on
the line. A line can be vertical, horizontal or oblique. The equation of a vertical line that intersects the x-
axis at (a, 0) is x=a because the x-coordinate of every point on the line is a. Similarly, the equation of a
horizontal line that intersects the y-axis at (0, b) is y=b because the y-coordinate of every point on the
line is b.

An oblique line is a straight line which is neither vertical nor horizontal. To find equation of an oblique
line we use its slope which is the measure of the steepness of the line. In particular, the slope of a line is
defined as follows.

Definition 4.1. The slope of a non-vertical line that passes through the points
P1(x1, y1) and P(xz, y») is

Ay Yo%

AX Xy — X

m=

The slope of a vertical line is not defined. Note that the slope of horizontal line is 0.




A
y]
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yiloooo Pi(x1, y1
: AX= XZ — Xl
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- Figure 4.4

Thus the slope of a line I is the ratio of the change in y, Ay, to the change in x, Ax (see Figure 4.4).
Hence, slope is the rate of change of y with respect x. The slope depends also on the angle of inclination
of the line. Note that the angle of inclination @ is the angle between x-axis and the line (measured
counterclockwise from the direction of positive x-axis to the line). Observe that

tanezﬂ

AX

Therefore, if @ is the angle of inclination of a line, then its slope is m =tané.

Now let us find an equation of the line that passes through a point P;(x;, y1) and has slope m. A point
P(x, y) with xx; lies on this line if and only if the slope of the line though P; and P is m; thatis

Y=Y _ m
X — Xq
This leads to the following equation of the line:
y—Vy; = m(x — Xl) (called point-slope form of equation of a line).

In general, depending on the given information, you can show that the equations of oblique lines can be
obtained using the following formulas.

Given Information X Formula for Equation of the Line

Slope m and its y-intercept (0,b) V Slope-Intercept-Form: y=mx+b

B Point-Slope-Form: y—y;= m(x—x,)

Slope m and a point (xy, y1) on/ Or Yy =m(x—xq) +y;

Two-Point Form:




Two points (x, y1) and (x,, ¥,) onl Y, =Y
Y=Y = (x=x)
X; =Xy
x-intercept (a,0) and y-intercept (0,b) Intercept Form: X + Y_ 1
b

Example 4.3: Find an equation of the line | if
(i) the line passes through (3, —2) and its angle of inclination is 135°.
(ii) the line passes through the points (1, 2) and (4, -2)

Solution: (i) The slope of I is m=tan(135°) = —1; and it passes through point (3, —2). Thus, using the

point-slope form with x;= 3 and y,= —2, we obtain the equation of the line as
y—(—2)= -1(x-3) which simplifiesto y=—-x+1.
(i) Given the line passes through (1, 2) and (4, -2), the slope of the line is

moY2—Y1 _—2-2 -4
Xo—%  4-1 3

So, using the point-slope form with x;= 1 and y;= 2, we obtain the equation of the line as
y—2= _?4 (x—=1) which simplifies to 4x + 3y =10.

(Note that it is possible to use the two-point form to find the equation of this line)

General Form: In general, the equation of a straight line can be written as
ax+by+c=0,

for constants a, b, ¢ with a and b not both zero. Indeed, if a=0 the line is a horizontal line given by y =
—¢/b, if b=0 the line is a vertical line given by x = —¢/a, and if both g, b=0 it is the oblique line given by
y =—(a/b)x — ¢/b with slope m =—-a/b and y-intercept —c/b .

Parallel and Perpendicular lines: slopes can be used to check whether lines are parallel, perpendicular
or not. In particular, let I, and I, be non-vertical lines with slope m;and m,, respectively. Then,

.(i) Land I, are parallel, denoted by I, || L, iff my=m,.
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(ii) Iy and I, are perpendicular, denoted by 1L I, iff mm,=-1 (or my =——)
my
Moreover, if I; and I, are both vertical lines then they are parallel. However, if one of them is horizontal
and the other is vertical, then they are perpendicular.

Example 4.4: Find an equation of the line through the point (3,2) that is parallel to the line
2x + 3y +5=0.

Solution: The given line can be written in the form Y = _?ZX —% which is the slope-intercept form;

that is, it has slope m =—2/3. So, as parallel lines have the same slope, the required line has slope —2/3.
Therefore, its equation in point-slope formis Yy —2= %Z(X—S) which can be simplified to 2x + 3y
=12.

Example 4.5: Show that the lines 2x + 3y +5=0 and 3x—2y —4 = 0 are perpendicular.

Solution: The equations can be written as Y = %ZX —% and Y =%X— 2 from which we can see

that m;=-2/3 and m,=3/2 . Since mym,=-1, thelines are perpendicular.

Exercise 4.1.2

1. Find the slope and equation of the line determined by the following pair of points. Also find the y-
and x- intercepts, if any, and draw each line.

(a) (0,2)and(3,2) (e) The origin and (1,2) (i) (-1,3)and (1,6)
(b) (2,0)and (2,3) (f) Theoriginand (1,-3)  (j) (-3,-2)and (2, -2)
(c) Theoriginand(1,0)  (g) (1,2) and (3,4) (k) (0,3)and (3,0)
(d) Theoriginand (-1,0)  (h) (-2,-3), (2,5) (I) (~1,0)and (0, 2)

2. Find the slope and equation of the line whose angle of inclination is & and passes through the point
P, if

(a) 0= %7[, P=(1,1). (d) =0, P=(0,1).

(b) O= %7[, P=(0,1). (e) 0= %7[, P=(1,3).




(c) 6=37, P=(0,1). (f 6=%7, P=(1,-3).
3. Find the x-and y-intercepts and slope of the line given by xX_y =1, and draw the line.
2 3

4. Draw the triangle with vertices A(-2,4), B(1,—1) and C(6,2) and find the following.
(a) Equations of the sides.
(b) Equations of the medians.
(c) Equations of the perpendicular bisectors of the sides.
(d) Equation of the lines through the vertices parallel to the opposite sides.

5. Find the equation of the line that passes through (2, —1) and perpendicular to 3x + 4y = 6.

6. Suppose /1 and £, are perpendicular lines intersecting at (—1, 2). If the angle of inclination of /4

is 45°, then find an equation of £ 5.
7. Determine which of the following pair of lines are parallel, perpendicular or neither.
(@) 2x—y+1=0 and 2x+4y =3 (d) y=3x+2 and 3x+ y=2

(b) 3x-6y+1=0 and x—2y =3 (e) 2x—3y=5 and 3x+2y—3=0
Xy
(c) 2x+5y+3=0 and 5x+3y+2=0 (f) §+§=1 and 2x+3y-6=0

8. Let L, be the line passing through P(a, b) and Q(b, a) such that a#b . Find an equation of the line
L, interms of a and b if

(a) L, passes through P and perpendicularto L;.
(b) L,passes through (@, a) and parallel toL;.

9. Letl;and L, be given by 2x + 3y —4=0 and x +3y —5= 0, respectively. A third line L3 is
perpendicular to L;. Find an equation of L;if the three lines intersect at the same point.

10. Determine the value(s) of k for which the line
(k+2)x+(k? —9)y+3k% -8k +5=0

(a) is parallel to the x-axis.



(b) is parallel to the y-axis.
(c) passes through the origin
(d) passes through the point (1,1).

In each case write the equation of the line.

11. Determine the values of @ and b for which the two lines ax—2y =1 and 6x—4y =b

(a) have exactly one intersection point.
(b) are distinct parallel lines.
(c) coincide.

(d) are perpendicular.

4.1.3 Distance between a point and a line

Suppose a line I and a point P(x,y) not on the line are given. The distance from P to I, d(P, I), is defined

as the perpendicular distance between P and /. That s,

d(P,l) = |PQ|, where Qisthe point on/ such that PQL /. (See Figure 4.5)

4
y

A
Pe
= Q
x Ll

Figure 4.5: |PQ| =d(P, )

If Pis on I, then d(P, ) = 0. Moreover, given a point P(h,k) observe that

(i) ifthe line | isa horizontal line y=b, then d(P, I) = |k—b].
(ii) if the line I is a vertical line x=a, then d(P,l)= |h—al]

In general, however, to find the distance between a point P(xg, yo) and an arbitrary line I given by ax +
by +c = 0, we have to first get a point Q on I such that PQL I/ and then compute |PQ]. This yields the
formula given in the following Theorem.



Theorem 4.2: The distance between a point P(xo, o) and aline L: ax + by +c =0 is given by

_ Jaxg +byg +¢|

IEL =

In particular, if we take (xg,)=(0,0) in this formula, we obtain the distance between the origin 0(0,0)
and aline L : ax+ by +c =0 which is given by

cl

Va2 +b?

d(O,L) =

Example 4.6: Show that the origin and P(6,4) are equidistant from the line L: y =—(3/2)x+13/2.
Solution: By equidistant we mean equal distance. So, we need to show d(O, L) =d(P, L).

To use the above formula, we first write the equation of the line L in the general form whichis 3x+2y
—13=0. Thus, a=3, b=2 and c=-13.

~ d(O,L)= lcl _|-13] 13
JaZip2 J9+4 V13
and d(P,L):|3X6+2X4_13|— 13

V32122 V13
Therefore, d(0,L)=d(P,L) = 13/+/13.
Thus, 0(0,0) and P(6,4) are equidistant from the given line L.

Exercise 4.1.3

1. Find the distance between the line L given by y = 2x +3 and each of the following points.
(a) The origin (b) (2,3) (c) (1,5) (d) (-1,-1)

2. Suppose L is the line through (1, 2) and (3, 2). What is the distance between L and
(@) The origin (b) (2,-3) (c) (a,0) (d) (a, b) (e) (a,2)

3. Suppose L is the vertical line that crosses the x-axis at (5, 0). Find d(P, L), when P is

(a) The origin (b) (2,-4) (c) (0, b) (d) (5, b) (e) (a,b)




4. Suppose L is the line that passes through (0, —3) and (4, 0). Find the distance between L and each of
the following points.

(a) The origin (b) (1, 4) () (-1,0) (d) (8, 3)
(e) (0,1) (f) (4,-2) (g) (1,-9/4) (h) (7, -4)

5. The vertices of AABC are given below. Find the length of the side BC, the height of the altitude from
vertex A to BC, and the area of the triangle when its vertices are

(@) A(3,4), B(2,1), and C(6,1).
(b) A(3,4), B(1,1), and C(5,2).
6. Consider the quadrilateral whose vertices are A(1,2), B(2,6), C(6,8) and D(5,4). Then,
(a) Show that the quadrilateral is a parallelogram.
(b) How long is the side AD?
(c) What is the height of the altitude of the quadrilateral from vertex A to the side AD.

(d) Determine the area of the quadrilateral.

4.2 Circles

By the end of this section, you should

e know the geometric definition of a circle.

e be able to identify whether a given point is on, inside or outside a circle.

e be able to construct equation of a circle.

e be able to identify equations that represent circles

e be able to find the center and radius of a circle and sketch its graph if its equation is given.

e be able to identify whether a given circle and a line intersect at two points, one points or never
intersect at all.

e know the properties of a tangent line to a circle.

e be able to find equation of a tangent line to a circle.

4.2.1 Definition of a Circle

Definition 4.2. A circle is the locus of points (set of points) in a plane each of which is
equidistant from a fixed point in the plane. The fixed point is called the center of the circle
and the constant distance is called its radius.




Definition 4.2 is illustrated by Figure 4.6 in which the center of the circle is denoted by "C" and
its radius is denoted by r.

A
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>

Figure 4.6. Circle with center C, radiusr

Observe that a circle is symmetric with respect its center. Based on the definition, a point P is on
the circle if and only if its distance to C is r, that is |CP| = r. A point in the plane is said to be
inside the circle if its distance to the center C is less than r. Similarly, a point in the plane is said
to be outside the circle if its distance to C is greater than r. Moreover, a chord of the circle is a
line segment whose endpoints are on the circle. A diameter is a chord of the circle through the
center C. Consequently, C is the midpoint of a diameter and the length of a diameter is 2r. For
example, AB and QR are diameters of the circle in Figure 4.6.
Example 4.7: Consider a circle of radius 5 whose center is at C(2,1). Determine whether each of
the following points is on the circle, inside the circle or outside the circle:
P1(5,5), Py(4,5), P3(—2,5), P4-1,-2), Ps(2,-4), Pe(7,0).
Solution: The distance between a given point P(x,y) and the center C(2,1) is given by

IPCl = J(x=2)2 +(y-1)2 or PO =(x—2)2 +(y—1)2. We need to compare |PC| with the
radius 5. Note that |PC| =5 < |PC|*= 25, |PC|<5 < |PC|%*< 25,

and |PC|>5 < |PC|®>>25.
Thus, P is on the circle if |PC|% =25, inside the circle if |PC|? <25 and outside the circle if
|PCJ> > 25. So, we can use the square distance to answer the question. Thus, as
|PiC|% = (5-2)*+(5-1)> = 25, |P,C|*=(4-2)*+(5-1)>=20and |PsC|? = (-2-2)*+(5-1)? = 32,
P, is on the circle, P is inside the circle, and Pj is outside the circle. Similarly, you can
show that Py is inside the circle, Ps is on the circle, and Pg is outside the circle.

Exercise 4.2.1

1. Suppose the center of a circle is C(1,-2) and P(7, 6) is a point on the circle. What is the
radius of the circle?

2. Let A(1, 2) and B(5, —2) are endpoints of a diameter of a circle. Find the center and radius of the
circle.

3. Consider a circle whose center is the origin and radius is\/g. Determine whether or not the circle




contains the following point.

@ (1,2) (b) (0,0) © 0—5) @ 62 32
(e) (5,0) ) (-1,-2), @ 32) ) 62 50
4. Consider a circle of radius 5 whose center is at C(—3,4). Determine whether each of the
following points is on the circle, inside the circle or outside the circle:
(a) (0,9) (b) (0,0) (c) (1,6) (d) (1, 0)
(e) (-7,1) (f) (-1,-1), (8) (2,4) (h) (5/2, 5/2)

4.2.2 Equation of a Circle

We now construct an equation that the coordinates (x,y) of the points on the circle should satisfy.
So, let P(x,y) be any point on a circle of radius r and center C(h,k) (see, Figure 4.7). Then, the
definition of a circle requires that

|CP|=Tr

= J(x—h?+(y-k)?=r

or

(x— h)2 +(y- k)2 =r? (Standard equation of a circle with
center (n,K) and radius r.

In particular, if the center is at origin, i.e., (h,k) = (0,0), the equation is

X2 +y>=r? (Standard Equation of a circle of radius r centered at origin)

P(x,y)

=
1
4\
\
O
&
=

QJ X
h X ~
Figure 4.7 circles (a)center at C(h,k) (b) center at origin

Example 4.8: Find an equation of the circle with radius 4 and center (-2, 1).
Solution: Using the standard equation of a circle in which the center (h, k) = (-2, 1) and
radius r =4 we obtain the equation
(x+2)2+(y-1)2=16.
Example 4.9: Find the equation of a circle with endpoints of a diameter at P(-2, 0) and Q(4, 2).



Solution: The center of the circle C(h,k) is the mid-point of the diameter. Hence,

(h,k):[_2+4,0L22j=(1,1). Also, forits radius r, r*= |CP|?*=(1+2)*+(1 — 0)*=10.

2
Thus, the equation of the circle is (x —h)*+(y —k)>=r* . That is,
(x—1)*+(y-1)*=10.

Example 4.10: Suppose P(-2,4) and Q(5,3) are points on a circle whose center is on x-axis.
Find the equation of the circle.
Solution: We need to obtain the center C and radius r of the circle to construct its equation. As
the center is on x-axis, its second coordinate is 0. Therefore, let C(h,0) be the center of the
circle. Note that |PC|*> = |QC|®> =r* asboth P and Q are on the circle. So, from the first
equality we get (—2—h)*+ 4> = (5—-h)> + 3% . Solving this for h we get h=1. Hence, the center is
at C(1,0)and r*=|QC|*=(5-1)*+3>=25. Therefore, the equation of the circle is

(x—1)%* + y* =25.

Example 4.11: Determine whether the given equation represents a circle. If it does, identify its
center and radius and sketch its graph.

(@ X +y +2x-6y+7=0

(b) x*+ y?+2x —6y+10 =0

(€) X*+ y*+2x —6y+11=0
Solution: We need to rewrite each equation in standard form to identify its center and radius.
We do this by completing the square on the x-terms and y-terms of the equation as follows:
() (x> +2x) + (y* —6Yy) =—T7. (Grouping x-terms and y-terms)

o (0 +2x12) +(y? -6y +32) =—7+1+0. (Adding 1 and 3% to both sides)

o (x+1f+@y-37=3 +——

Comparing this with the standard equation of circle this is equation of a circle with center
(h, k) = (-1, 3) and radius r = J3.The graph of the circle is sketched in Figure 4.8

Ay

Figure 4.8

(b) Following the same steps as in (a), you can see that x>+ y>+2x —6y +10 =0 is
equivalentto (x+1)*+(y—3)*=0.



This is satisfied by the point (-1, 3) only. The locus of this equation is considered as a
point-circle, circle of zero radius (sometimes called degenerated circle).
(c) Again following the same steps as in (a), you can see that x* + y*+2x —6y+11 =0 is
equivalentto (x+1)%+(y—3)°=—1.
Note that this does not represent a circle; in fact it has no locus at all (Why?).

Remark:  Consider an equation of the form

X +y*+Dx+Ey+F=0.
By completing the square you can show the following:
e If D>+E*—4F>0, then the equation represents a circle with

center (—Q —5) and radius I’Z%\/D2+E2—4F.

2'7 2

e If D?+E>—4F =0, then the equation is satisfied by the point (—%, —%) only. In
this case the locus of the equation is called point-circle (circle of zero radius).

e If D*>+E’—4F < 0, then the equation has no locus.

Exercise 4.2.2

1

O 00 Y

2.
3.

. Determine whether each of the following points is inside, outside or on the circle with equation
X2 + y2 =5.
@ (12, () 322 (© O0~5) (@ 1L 3/2)
Find an equation of the circle whose endpoints of a diameter are (0, —3) and (3, 3).
Determine an equation of a circle whose center is on y-axis and radius is 2.
Find an equation of the circle passing through (1, 0) and (0, 1) which has its center on the line 2x +
2y =5.
. Find the value(s) of k for which the equation 2x* + 2y* + 6x — 4y + k = 0 represent a circle.
An equation of a circle is X2 + y2 —6y+k =0. If the radius of the circle is 2, then what is the
coordinates of its center?
. Find equation of the circle passing through (0,0), (4,0) and (2, 2).
. Find equation of the circle inscribed in the triangle with vertices (-7, —10), (-7, 15), and  (5,-1).

. In each of the following, check whether or not the given equation represents a circle. If the equation

represents a circle, then identify its center and the length of its diameter.
(a) X2 + y2 —18x+24y =0 (d) 5x2 +5y2 +125x+ 60y —-100=0

(b) X2+y2—-2x+4y+5=0 (e) 36X +36y2 +12x+24y—139=0



(€) Xx?+y2—4x—2y+11=0 () 3x2+3y2 +2x+4y+6=0

10. Show that x* + y*+ Dx + Ey + F =0 represents a circle of positive radius iff D>+ E*> — 4F > 0.

4.2.3 Intersection of a circle with a line and tangent line to a circle

The number of intersection points of a given line and a circle is at most two; that is, either no
intersection point, or only one intersection point, or two intersection points. For instance, in
Figure 4.9, the line I; has no intersection with the circle, I, has two intersection points with the
circle, namely, Q; and Q., and I3 has only one intersection point with the circle, namely, P.

A line which intersects a circle at one and only one point is called a tangent line to the circle. In
this case, the intersection point is called the point of tangency. Thus, I3 a tangent line to the

circle in Figure 4.9 and P is the point of tangency.
A

y

Figure 4.9: Intersection of a line and circle

In Figure 4.9, observe that every point on |, are outside of the circle. Hence, d(C,Q) > r for

every point Q on |;. Consequently, d(C, I;) > r. On the other hand, there is a point on I, which

is inside the circle. Hence, d(C, I) <.

For the tangent line I3 the point of tangency P is on the circle implies that |[CP| =r and P is the

point on I; closest to C. Therefore, d(C, I3) = |CP| = r. This shows also that CP_L 5.

In general, given a circle of radius r with center C(h,k) and a line I, by computing the distance

d(C, ) between Cand | we can conclude the following.

(). Ifd(C, I) > r, then the line does not intersect with the circle.

(i) Ifd(C, 1) <r, then the line is a secant of the circle; that is, they have two intersection points.

(i) 1 d(C, ) =r, then| is atangent line to the circle. The point of tangency is the point P on
the line (and on the circle) such that CP L 1. This means the product of the slopes of I and
CP must be -1.

Example 4.12 Write the equation of the circle tangent to the x-axis at (6,0) whose center is on
the line x -2y =0.

Solution: The circle in the question is as in Figure 4.10.



(1/2) x
C(h,k)

v

P(6,0)
Figure 4.10

Let C(h, k) be the center of the circle. (h, k) is on the line y =(1/2)x = k=(1/2)h; and
the circle is tangent to x-axis at P(6,0) = CP should be perpendicular to the x-axis.
= h=6 = k=3 and the radius isr=|CP| = k-0 =3.

Hence, the circle is centered at (6, 3) with radius r =3. Therefore, the equation of the circle is (x —6)°+
(y—=3)°=9.

Example 4.13 Suppose the line y=x is tangent to a circle at point P(2,2). If the center of the circle is on
the x-axis, then what is the equation of the circle?

Solution: The circle in the question is as in Figure 4.11.

A

v

Figure 4.11

Let the center of the circle be C(h,0). We need to find h. The slope of the line | : y=xis 1 and
| is perpendicular to CP. Hence the slope of CP is —1.

So, the slopeof CP= 2=0_ 1 = h-2=2 or h=4.

= The center of the circle is C(4,0); and r’= |CP|*=(2—0)* + (2— 4)* = 4+4=8.
Therefore, the equation of the circle is (x—4)*+y*=r* = 8.
Exercise 4.2.3

1. Find the equation of the line tangent to the circle with the center at (—1, 1) and point of tangency
at (-1, 3).

2. The center of a circle is on the line y =2x and the line x=1 is tangent to the circle at (1, 6). Find the

center and radius of the circle.




3.. Suppose two lines y =X and Y =X—4 are tangent to a circle at (2, 2) and (4, 0), respectively.

Find equation of the circle.

4. Find an equation of the line tangent to the circle X2 + y2 —2X+2y =2 at (1,1).
5. Find equation of the line through (v/32, 0) and tangent to the circle with equation
X2 + y2 =16.
6. Suppose P(1,2) and Q(3, 0) are the endpoints of a diameter of a circle and L is the line tangent to
the circle at Q.
(a) Show that R(5,2)ison L.

(b) Find the area of APQR, when R is the point given in (a).

4.3 Parabolas

By the end of this section, you should

e know the geometric definition of a parabola.

e know the meaning of vertex, focus, directrix, and axis of a parabola.

e be able to find equation of a parabola whose axis is horizontal or vertical.
e be able to identify equations representing parabolas.

e be able to find the vertex, focus, and directrix of a parabola and sketch the parabola.

4.3.1 Definition of a Parabola

Definition 4.3: Let L be afixed line and F be a fixed point not on the line, both lying on the
plane. A parabola is a set of points equidistant from L and F. The line L is called the
directrix and the fixed point F is called the focus of the parabola.

This definition is illustrated by Figure 4.12.



¢ Note that the point halfway between the 4
focus F and directrix L is on the parabola;
it is called the vertex, denoted by V.

e |VF| iscalled the focal length. [\t % axis

e The line through F perpendicular to the
directrix is called the axis of the parabola. It
is the line of symmetry for the parabola.

e The chord BB’ through F perpendicular to
the axis is called latus rectum.

e The length of the latus rectum, i.e, |BB'|, is directrix
called focal width.

Parabola

X

[
»

Figure 4.12: Parabola, d(P,L) = |PF|

Letting |VF | =p, you may show that |BB’| =4p; i.e., focal width is 4 times focal length.

If P(x,y) isany point on the parabola, then by the definition, the distance of P from the directrix
is equal to the distance between P and the focus F. This is used to determine an equation of a
parabola. To do this, we consider first the cases when the axis of the parabola is parallel to one
of the coordinate axes.

Exercise 4.3.1

Use the definition of parabola and the given information to answer or solve each of the following
problems.

1. Suppose the focal length of a parabolais p, for some p > 0. Then, show that the focal width (length
of the latus rectum) of the parabolais 4p.

2. Suppose the vertex of a parabola is the origin and its focus is F(0,1). Then,
(a) What is the focal length of the parabola.
(b) Find the equations of the axis and directrix of the parabola.
(c) Find the endpoints of the latus rectum of the parabola.
(d) Determine whether each of the following point is on the parabola or not.
(i) (4,4) (i) (2,2) (i) (-4,4)  (v) (4-4)  (v) (1,1/4)
(Note: By the definition, a point is on the parabola iff its distances from the focus and from the directrix are equal. )

3. Suppose the vertex of a parabolais V(0, 1) and its directrix is the line x =—2. Then,



(a) Find the equation of the axis of the parabola.

(b) Find the focus of the parabola.

(c) Find the length and endpoints of the latus rectum of the parabola.

(d) Determine whether each of the following point is on the parabola or not.

(i) (1,0) (i) (3,00  (iii) (8,9) (i) (8-7)  (v) (8,38)

4.3.2 Equation of Parabolas

I: Equation of a parabola whose axis is parallel to the y-axis:

A parabola whose axis is parallel to y-axis is called vertical parabola. A vertical parabola is
either open upward (as in Figure 4.13 (a) ) or open downward (as in Figure 4.13 (b)).

A A
y AXis y
y=k
f direct
p \V(h,, k)
V(h, k)
y=k—-p 1, k)
directrix
> x>

x »

Figure 4.13: (a) parabola open upward (b) parabola open downward

Let p be the distance from vertex V(hk) to the focus F of the parabola, i.e.,|VF| = p. Then, by
the definition, F is located p units above V if the parabola opens upward and it is located p units
below V if the parabola opens downward as indicated on Figure 4.13(a) and (b), respectively.
To determine the desired equation, we first consider the case when the parabola opens upward.
Therefore, considering a vertical parabola with vertex V(h,k) that opens upward (Figure 4.13a),
its focus is at F(h, k+p). = The equation of its directrix isy = k-p.

Then, for any point P(x,y) on the parabola, |PF]| is equal to the distance between P and the directrix if
and only if

Jx=h)? +(y—k—p)? =y—k+p

Upon simplification, this becomes

(x—h)> =4p(y—k) called standard equation of a vertical parabola,

vertex (h, k), focal length p. open upward.




In particular, if the vertex of a vertical parabola is at origin, i.e., (h, k) =(0,0) and opens upward,
then its equation is
x* =4py (In this case, its focus isat F(0, p), and its directrix is y =—)

If a vertical parabola with vertex V(h, k) opens downward, then its directrix is above the
parabola and its focus lies below the vertex (see Figure 4.13(b). In this case,

the focusis at F(h, k—p), and its directrix is given by y=k+p. Moreover, following the same steps as
above, the equation of this parabola becomes

( Standard equation of a vertical parabola,

(x=h)* =-4p(y k)

open downward, vertex (h k).and focal lengthp. )

In particular, if the vertex of a vertical parabola is at origin, i.e., (h, k) =(0,0) and opens
downward, then its equation is
x* =—4py ( In this case, its focus is at F(0,—p), and its directrix isy =p)

Example 4.14: Find the vertex, focal length, focus and directrix of the parabola y = x%.
Solution: The given equation, x* =y, is the standard equation of the parabola with vertex at
origin (0,0) and 4p =1 = its focal length is p = 1/4. Since the parabola opens upward, its
focus is p units above its vertex = its focus is at F(0,1/4); and its directrix is horizontal line p
units below its vertex = its directrix is y =-1/4. You may sketch this parabola.

Example 4.15: If a parabola opens upward and the endpoints of its latus rectum are at A(—4, 1) and B(2,
1), then find the equation of the parabola, its directrix and sketch it.

Solution: Since the focus F of the parabola is at the midpoint of its latus rectum AB, we have

F= (_474’2,1i21)= (-11), and focal width 4p = |AB| =2—(-4) =6 = focal length p =3/2.

Moreover, as the parabola opens upward its vertex is p units below its focus. That is,
V (h, k)=(-1, 1-3/2) = (—1,-1/2). Therefore, the equation of the parabola is
2
(x+1)° = 6(y + %)
And its directrix is horizontal line p units below its vertex, whichis y=-1/2 -3/2 =-2.

The parabola is sketch in the Figure 4.14 .
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Figure 4.14

I1: Equation of a parabola whose axis is parallel to the x-axis.
A parabola whose axis is parallel to x-axis is called horizontal parabola. Such parabola opens
either to the right or to the left as shown in Figure 4.15 (a) and (b), respectively.

A A
y dire y

X=
X=
Axis vfh.k) *P.K) v ok v\hi
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\ x> X
Figure 4.15: (a) Parabola open to the right (b) Parabola open to the left
The equations of such parabolas can be obtained by interchanging the role of x and y in the

equations of the parabolas discussed previously. These equations are stated below. In both cases,
let the vertex of the parabola be at V(h,k).

e If a horizontal parabola opens to the right (as in Fig.4.15(a) ), then its focus is to the right of
V at F(h+p, k), its directrix is X =h—p, and its equation is

(y—k)* =4p(x-h)

e If a parabola opens to the left (as in Figure 4.15 (b) ), then its focus is to the left of V at
F(h—p,k), its directrix is x=h+p , and its equation is:

(y=K)? =—4p(x—h)

If the vertices of these parabolas are at the origin (0,0), then you can obtain their corresponding
equations by setting h=0 and k=0 in the above equations.

Example 4.16: Find the focus and directrix of the parabola y?+10x =0 and sketch its graph.



Solution: The equation is y*> =-10x; and comparing this with the above equation, it is an

equation of a parabola whose vertex is at (0,0), axis of symmetry is the x-axis, open to the left
and 4p=10, i.e., p=5/2. Thus, the focus is F=(-5/2,0) and its directrix is x =5/2. Its graph is
sketched in Figure 4.16.

directrix

v

5/2 x

Figure 4.16: y* +10x=0

Example 4.17: Find the focus and directrix of the parabola y* + 4y + 8x —4 = 0 and sketch it.

Solution: The eaquation is y* +4y =—8x +4. (Now complete the square of y-terms)

= y? + 4y+2% = —8x +4+4
= (y +2)* = -8x +8
= (y+2)*=-8(x-1)
This is equation of a parabola with vertex at (h, k)=(1,-2), open to the left and focal length p, where

4p=8 = p=2. Therefore, its focus is

F=(h—p, k) = (-1, -2), and directrix x=h+p =3. The parabola is sketched in Figure 4.17.

v
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(-1,-2) (1,-2)
=3
Figure 4.17: y* +4y +8x—4 =0
Remark:- An equation given as: Ax*+Dx + Ey +F=0

or Cy’+Dx+Ey+ F=0

may represent a parabola whose axis is parallel to the y-axis or parallel to the x-axis,
respectively. The vertex, focal length and focus for such parabolas can be identified after
converting the equations into one of the standard forms by completing the square.



Exercise 4.3.2

For questions 1 to 8, find an equation of the parabola with the given properties and sketch its

graph.
1. Focus (0, 1) and directrix y=-1. 5. Vertex (3,2) and Focus (3, 3).
2. Focus (-1, 2) and directrix y =—2. 6. Vertex(5,-2) and Focus (-5, —2).
3. Focus (3/2,0) and directrix x=-3/2. 7. Vertex(1,0) and directrix x = —2.
4. Focus (—1,-2) and directrix x=0. 8. Vertex (0, 2) and directrix y = 4.

For questions 9 to 17 find the vertex, focus and directrix of the parabola and sketch it.
9. y=2x° 12. X+y?=0 15. y* +8x+6y+25=0
10. 8x%=-y 13. x-1=(y+2)? 16. y2—2y—4x+9=0
11. 4x—y*=0 14. (x+2)*=8y-24  17. —4x*+4x-1y=1

18. Find an equation of the parabola that has a vertical axis, its vertex at (1, 0) and passing through
(0,1).

19. The vertex and endpoints of the latus rectum of the parabola X2 = 36Y forms a triangle. Find the
area of the triangle.

20. P(4, 6) is a point on a parabola whose focus is at (0, 2) and directrix is parallel to x-axis. (a) Find
an equation of the parabola, its vertex and directrix.

(b) Determine the distance from P to the directrix.

21. Aniron wire bent in the shape of a parabola has latus rectum of length 60cm. What is its focal
length?

22. A cross-section of a parabolic reflector is shown in the figure below. A bulb is located at the focus

and the opening at the focus, AB, is 12 cm. What is the diameter of the opening, CD, 8 cm from
the vertex?

/




4.4 Ellipses

By the end of this section, you should

e know the geometric definition of an ellipse.

e know the meaning of the center, vertices, foci, major axis and minor axis of an ellipse.
e be able to find equation of an ellipse whose major axis is horizontal or vertical.

e be able to identify equations representing ellipses.

e be able to find the center, foci and vertices of an ellipse and sketch the ellipse.

4.4.1 Definition of an Ellipse

Definition 4.4: Let F and F’ be two fixed points in the plane. An ellipse is the locus or set of all points in
the plane such that the sum of the distances from each point to F and F' is constant. That is, a point P
is on the ellipse if and only if |PF|+ |PF’| = constant. (See Figure 4.18).

The two fixed points, Fand F’, are called foci (singular- focus) of the ellipse.

A

Figure 4.18: Ellipse: |PF| + |PF’| = constant

Note also the following terminologies and relationships about ellipse.

e The midpoint C between the foci F' and F is called the center of the ellipse.
e The longest diameter (longest chord) V'V through F’ and F is called the major axis of the ellipse; and
the chord BB' through C which is perpendicular to V'V is called minor axis.
e The endpoints of the major axis, V' and V, are called the vertices of the ellipse.
= From the definition, |V'F'| + |V'F| = |VF'| + |VF| = |V'F'| = |VF| = |CV'| = |cV]|. Hence,
C is the midpoint of V'V. We denote the length of the major axis by 2a. Thatis, |cv| =a.
= |VF'| +|VF| =|V'V]| =2a.
= |PF'| + |PF| =2a, for any point P on the ellipse.
= Welet |BC|=b. (You can show that C is the midpoint of BB’. So, |B'C|=b.)
= The distance from the center C to a focus F (or F’) is denoted by ¢, i.e., |CF| =c= |CF'|.




= Now, since |BF'|+ |BF| = 2a and BC is a perpendicular bisector of F’'F, we obtain that
|BF'| = |BF|=a. Hence, using the Pythagoras Theorem on ABCF, we obtain
b’+c?=a?> or b%*= a’-c?
(Note: a>h. If a=b, the ellipse would be a circle with radius r =a =b ).
= The ratio of the distance between the two foci to the length of the major axis is called the
eccentricity of the ellipse, and denoted by e. That is,

F'F c
e= == (Notethat O <e <1 because O<c<a)

\vv\ a’

Exercise 4.4.1

Use the definition of ellipse and the given information to answer or solve each of the following
problems.

1. Suppose F' and F are the foci of an ellipse and B’ and B are the endpoints of the minor axis of the
ellipse, as in Figure 4.18. Then, show that each of the followings hold.

(a) ABF'Fis isosceles triangle.
(b) The quadrilateral BF’'B’F is a rhombus.
(c) FF'is perpendicular bisector of BB’ ; and also BB’ is perpendicular bisector of FF'.

(d) If the length of the major axis is 2a, length of minor axis is |BB’| = 2b, and |F'F|=2c, for
some positive a, b, ¢, then

(i) |BF|=a (i) a®*=b*+c’
2. Suppose the vertices of an ellipse are (£2, 0) and its foci are (+1, 0).
(a) Where is the center of the ellipse?
(b) Find the endpoints of its minor axis.
(c) Find the lengths of the major and minor axes.
(d) Determine whether each of the following points is on the ellipse or not.
(i) (1,3/2) (i) (3/2,-1) (i) (-1,3/2) (i) (-1,-3/2) (v) (1, 1)
(Note: By the definition, a point is on the ellipse iff the sum of its distances to the two foci is 20 )

3. Suppose the endpoints of the major axis of an ellipse are (0, £2) and the end points of its minor

axis are (+1, 0).




(a) Where is the center of the ellipse?

(b) Find the coordinates of the foci.

(c) Determine whether each of the following points is on the ellipse or not.
M @23) G (21) i) (v2-v3) v (3/21)

4. Suppose the endpoints of the minor axis of an ellipse are (1, £3) and its eccentricity is 0.8. Find

the coordinates of (a) the center, (b)the foci, (c) the vertices of the ellipse.

4.4.2 Equation of an Ellipse

In order to obtain the simplest equation for an ellipse, we place the ellipse at standard position.
An ellipse is said to be at standard position when its center is at the origin and its major axis lies
on either the x-axis or y-axis.

I. Equation of an ellipse at standard position:

There are two possible situations, namely, when the major axis lies on x-axis (called horizontal
ellipse) and when the major axis lies on y-axis (called vertical ellipse). We first consider a
horizontal ellipse as in Figure 4.19

v

Figure 4.19: Horizontal ellipse at standard position

Let the center of the ellipse be at the origin, C(0,0) and foci at F'(—c,0), F (c,0) and vertices at
(-a,0) and (a,0) (see Figure 4.19). Then, a point P(x,y) is on the ellipse iff
|PF'| + |PF| =2a.

Thatis, /(x+c)2+y2 ++/(x—c)2+y2 =2a

or  (x—c)?+y? =2<’:\—\/(X+C)2 +y?

Squaring both sides we get
x% —2cx+¢% +y2 =4a% —4a\(x+¢)® + y2 + X% + 2cx +¢2 + y?

which simplifiesto  ay(x+¢)% +y% =a® +cx

Again squaring both sides, we get  a*(x® +2cx + ¢ + y?) =a* + 2a’cx + ¢°x*

which becomes  (a® -c®)x* +a’y® =a’(a® —c?)



Now recalling that b? = a? —c? and dividing both sides by ah?, the equation becomes
x2  y? . (Equation of horizontal ellipse at standard position,
a2 vertices (+a, 0), foci (zc, 0), where ¢®=a’~b?)

a2 —
a’? Db?

For a vertical ellipse at standard position, the same procedure gives the equation
x> y2 4 (Equation of vertical ellipse at standard position,

b2 a2 vertices (0, +a), foci (0, £¢ ), where ¢®= a*~ b?)

Note: Notice that here, for vertical ellipse, the larger denominator a? is under y>.
Example 4.18: Locate the vertices and foci of 16x*+ 9y* =144 and sketch its graph.

Solution: Dividing both sides of the equation by 144, we get:

2 2 2 2

9 16 32 42

This is equation of a vertical ellipse at standard position with a=4, so vertices at (0, +4), and
b=3; i.e., endpoints of the minor axis at (+3, 0). Since ¢?=a’>~b?>=7 = c=+/7, the foci are

(O, + ﬁ) The graph is sketched in Figure 4.20.

v

Figure 4.20: 16x°+ 9y’ =144

(I1) Equation of shifted Ellipses:

When an ellipse is not at standard position but with center at a point C(h,k), then we can still obtain its
equation by considering translation of the xy-axes in such a way that its origin translated to the point
C(h,k). This result in a new XY’ coordinate system whose origin O’ is at C(h,k) so that the ellipse is at

standard position relative to the XY’ system( see, Figure 4.21)



Fig. 4.21: (a) horizontal ellipse, center C(h,k) (b) vertical ellipse, center C(h,k)

Consequently, the equation of the horizontal and vertical ellipses relative to the new XY’ coordinate
system with (x', y') coordinate points are

I2 |2 I2 |2
X X
_2+y_2=1 and Y oo1,
a b b a

respectively. Since the origin of the new coordinate system is at the point (h,k) of the xy-coordinate

!

system, the relationship between a point (x,y) of the xy-coordinate system and (x,y’) of the new

coordinate system is given by (x, y) = (x,y') + (h, k). Thatis,

!

xX'=x-h, and y' =y—k.

Thus, in the original xy-coordinate system the equations of the horizontal and vertical ellipses
with center C(h, k), lengths of major axis = 2a and minor axis = 2b are, respectively, given by

(x— h)2 (y— k)2 (Standard equation of horizontal ellipse with center C(h,k) )
+ =1
a® b2
and
(x— h)2 (y— k)2 (Standard equation of vertical ellipse with center C(h,k) )
+ =1
b2 ¥

Example 4.19: The endpoints of the major axis of an ellipse are at (-3,4) and (7,4) and its eccentricity
is 0.6. Find the equation of the ellipse and its foci.

Solution: The given vertices are at V'(-3,4) and V(7,4) implies that 2a = |V'V| =10 = a =5;

and the center C(h,k) is the midpoint of V'V = (h,k) = (#,%) =(2,4) . Moreover, eccentricity =
c/a=0.6 = c=5x0.6=3. Hence, b*=a’—c’=25-9 =16. Note that the major axis V'V is horizontal.
Therefore, using the standard equation of a horizontal ellipse, the equation of the ellipse is



(x=2% (y-9>

25 16
Now, as the center (h,k) = (2,4), c¢=3 and V'V is A
horizontal, the foci are at (h £ ¢, k) = (2 £3, 4). ,B__QS)\
. . , K Cl24) 4) ,
That is, the foci are at F’(—1, 4) and F(5, 4). v’ (_3'4\ o V(7,4)
Moreover, the endpoints of major axis are at B’ (2,0) >

Figure 4.22
(h, kt b) = (2, 4+ 4) = B'=(2,0) and B=(2,3). gure

The graph of the ellipse is sketched in Figure 4.22.

Example 4.20: Find the center, foci and vertices of 4X* + Y +8x =0 and sketch its graph
Solution: Group the x-terms of the equation and complete the square:
A4(x* +2x)+y* =0

= 4(x*+2x+1) +y =4 (divide both sides by 4)

2

= (x+1)2+y7=1

This is equation of a vertical ellipse (major axis parallel to the y-axis), center C=(h,k) = (-1,0),
a=2, b=1.= ¢’ =a’-b?’=4-1 =c=4+3

Thus, foci: F'(-1, V3 )and F(-1,V3),

Vertices: V=(-1,2), V'=(-1, -2);

Endpoints of minor axis: B=(0,0), B'=(-2,0);

The graph of the ellipse is sketched in

c V(1,4

Figure 4.23.
Figure 4.23: 4x*+ y*+8x =0

|| Remark: Consider the equation: Ax?+ Cy*+ Dx +Ey +F =0,



when A and C have the same sign. So, without lose of generality, let A >0 and C >0.
By completing the squares you can show that this equation is equivalent to

2 2 2. 2
g) ( L) _ D?C+E2A-4ACF
A(x+2A +Cy+zc TAC .

From this you can conclude that the given equation represents:-

e an ellipse with center (—%, —%) if D’C+E*A-4ACF>0.

e If D’C+E’°A—4ACF=0, the equation is satisfied by the point (—%, —%) only. In

this case, the locus of the equation is called a point-ellipse (degenerate ellipse).
e If D’C+E*A—4ACF< 0, then the equation has no locus.

Exercise 4.4.2

For questions 1 to 13, find an equation of the ellipse with the given properties and sketch its graph.
Fociat (£2,0) and avertexat (5, 0)
A focus at (0, —3) and vertices at (0, £5)
Foci at (2, 3),(2,7) and avertex at (2, 0)

1

2

3

4. Fociat (0,-1), (8,-1) and avertex at (9, —-1)

5. Center at (6,1), one focus at (3,1) and one vertex at (10, 1)
6. Foci at(2,+1) and the length of the major axis is 4.

7

Foci at (2, 0), (2, 6) and the length of the minor axis is 5.

8. The distance between its foci is 2\/3 and the endpoints of its minor axis are (-1, —2) and (3,-2).

9. Vertices at (£5, 0) and the ellipse passes through (-3, 4).

10. Center at (1, 4), avertex at (10, 4), and one of the endpoints of the minor axis is (1, 2).

11. The ellipse passes through (-1, 1) and (%,— ) with center at origin.

12. The endpoints of the major axis are (3, —4) and (3, 4) , and the ellipse passes through the origin
13. The endpoints of the minor axis are (3, —2) and (3, 2) , and the ellipse passes through the origin

For questions 14 to 22 find the center, foci and vertices of the ellipse having the given equation and
sketch its graph.

2 2 2 2
1@, XY g 17. =27 (y+3° _, 20. 9x2 +4y% —18x =27
9 5 9 16

15. 5x2+y%2=25 18 (x+1)?+2(y+2)?=3 21. X2 +2y? —6x+4y=—-7

16. x2+9y%2=9 19. X2 +9y? —2x+18y+1=0  22. 4x®>+y?+2x—-10y=6



23. Consider the equation 2x2 + 4y2 +8x—-16y+ F =0. Find all values of F such that the graph of
the equation

(a) is an ellipse. (b) is a point. (c) consists of no points at all.

4.5 Hyperbolas

By the end of this section, you should

e know the geometric definition of a hyperbola.

e know the meaning of the center, vertices, foci and transverse axis of a hyperbola.

e be able to find equation of a hyperbola whose transverse axis is horizontal or vertical.
e be able to identify equations representing hyperbolas.

e be able to find the center, vertices, foci, and asymptotes of a hyperbola and sketch the hyperbola.

4.5.1 Definition of a hyperbola

Definition 4.5: Let F and F’ be two fixed points in the plane. A hyperbola is the set of all points in the
plane such that the difference of the distance of each point from F and F’ is constant. We shall denote
the constant by 2a, for some a > 0. That is, a point P is on the hyperbola if and only if |PF’'| — |PF| =2a
(or |PF|—= |PF'| = 2a, whichever is positive) . The two fixed points F and F’ are called the foci of the
hyperbola.

|PF'| — |PF| = 2a

Principal

hyperbola

N
v

Figure 4.24: Hyperbola

Figure 4.24 illustrates the definition of hyperbola. Notice that the definition of hyperbola is similar to
that of an ellipse, the only change is that the sum of distances has become the difference of distances.



Here, for the difference of any two unequal values, we take the higher value minus the smaller so that a
> 0 in the definition. The following terminologies, notations and relationships are also important with
regard to a hyperbola. Refer to Figure 4.24 for the following discussion.

e The line through the two foci F’ and F is called the principal axis of the hyperbola. The point on the
principal axis at halfway between the two foci, that is, the midpoint of F'F, is called the center of the
hyperbola and represented by C. We denote the distance between the two foci by 2c. Thatis, |F'F|
=2c or |CF|=c=|CF'|. Notingalso that |PF'| < |F'F|] + |PF]| in APF'F and |PF'| - |PF|
=2a, you can show that a<c.

= The points V' and V where the hyperbola crosses the principal axis are called vertices of the
hyperbola. The line segment V'V is called the transverse axis of the hyperbola. So, as V'
and V are on the hyperbola, the definition requires that [V'F| — |V'F'| = |VF'| — [VF|. From
this, you can obtain that |V'F'| = |VF|. Consequently,

(i) Cisthe midpoint ofalso V'V; thatis, |CV'|=|CV|.
(ii) |V'V] =|V'F| = |VF| = |V'F| — |V'F'| = 2a. (The length of the transverse axis is 2a)

(iii) |V'Cl =a=|CV] (Thisfollows from (i) and (ii). )

= The eccentricity e of a hyperbola is defined to be the ratio of the distance between its foci to
the length of its transverse axis. That is, similar to the definition of eccentricity of an ellipse,
the eccentricity of a hyperbola is

e—I"fl_c

=V~ a (Buthere, e>1 because c>a)

Exercise 4.5.1

Use the definition of hyperbola and the given information to answer or solve each of the following
problems.

1. Suppose Cisthe center, F' and F are the foci, and V' and V are the vertices of the hyperbola, as in
Figure 4.24, with |CV| =aand |CF| =c. Then, show that each of the followings hold.

(a) If Pis any point on the hyperbola, then |PF| — |PF'| =+2a.
(Note: Taking that |PF| — | PF"| =k, a conslanl, show lhal k=120 .)
(b) a>c.

2. Consider a hyperbola whose foci are (+2, 0) and contains the point P(2, 3).




(a) Where is the center of the hyperbola?

(b) Determine the principal axis of the hyperbola.

(c) Find the length of the transverse axis of the hyperbola.
(d) Find the coordinates of the vertices of the hyperbola.

(e) Determine whether each of the following points is on the hyperbola or not.

() (-2,3) (i) 2,-3) (i) 2-3) ™ 349 © (13,6)
3. Suppose the vertices of a hyperbola are at (0, +2) and its eccentricity is 1.5. Then,
(a) Find the foci of the hyperbola.

(b)) Determine whether each of the following points is on the hyperbola or not.

M (5.3 ) @3 i) (5,-3 v (35)

4.5.2 Equation of a hyperbola

We are now ready to derive equation of a hyperbola. But, for simplicity, we consider first the
equation of a standard hyperbola with center at origin. A standard hyperbola is the one whose

principal axis (or transverse axis) is parallel to either of the coordinate axes.
I. Equation of a standard hyperbola with center at origin.

There are two possible situations, namely, when the transverse axis lies on x-axis (called
horizontal hyperbola) and when the transverse axis lies on y-axis (called vertical hyperbola). We
first consider a horizontal hyperbola with center C(0,0), vertices V'(-a, 0), V (a, 0) and foci

F'(-c, 0), F (c, 0).



Figure 4.25: Horizontal hyperbola centered at origin

Notice that ¢ —a® >0 asc >a . Hence, we can put b% =c? —a? for some positive b. That is,

a? +b? =c? so that a, b, ¢ are sides of a right triangle (see, Figure 4.25). The line segment BB’
perpendicular to the transverse axis at C and with endpoints B(0,b) and B’(0,-b) is called
conjugate axis of the hyperbola. Observe that the midpoint of the conjugate axis is C and its
length is |BB’| =2b. (‘b will play important role in equation of the hyperbola and its graph).
Now, for any point P(x,y) on the hyperbola it holds that |PF'|— |PF|=2a.

That is, \/(x+c)2 + y2 —\/(x—c)2 + y2 =2a

or  J(x+¢)?+y? =2a++(x—c)? +y?

Squaring both sides we get
X% +2cx +¢2 + y2 = 4a? +4aw/(x—c)2 + y2 +x2—2cx+¢% + y2

which simplifies to a\/(x—c)2 + y2 =cx—a’

Again squaring both sides and rearranging, we get (c* —a?)x* —y* =a’(c’ —a’ + y?).

Recall that we set b? =c2 —a?. So, using this in the above equation and dividing both sides by
a’b?, the equation becomes
ﬁ y2 (Equation of horizontal hyperbola with center C(0,0),

2 p2 1 vertices (+a, 0), foci (+c, 0), where ¢c*=a’+b?)

QD

Note that this hyperbola has no y-intercept because if x = 0, then —y? = b? which is not possible.
The hyperbola is symmetric with respect to both x-and y- axes.
Also, from this equation we get
2 2
X—2 :l+;/—2 >1 impliesthat x*>a°. So, |[¥=vx*2>+a®=a.
a



Therefore, we have x >a or x <-—a. This means that the hyperbola consists of two parts,
called its branches. Moreover, if we solve for y from the equation we get

y= +g x2 a2—>4_rgxasx—>oo.

b

This means the hyperbola will approach (but never reaches) the line y :igx as x gets larger

b

and larger. That is, the lines y=+ 2 x are the asymptotes of the hyperbola.

In sketching a hyperbola, it is best to draw the rectangle formed by the line y = +b and x = +a

and the to draw the asymptotes which are along the diagonals of the rectangle (as shown by the

dashed lines in Figure 4.25). The hyperbola lies outside the rectangle and inside the asymptotes.

It opens around the foci.

Example 4.21: Find an equation of the hyperbola whose foci are F'(-5, 0) and F(5, 0) and
contains point P(5, 16/3).

Solution: It is horizontal hyperbola with center (0,0) and ¢ = 5. In addition, as P(5, 16/3) is

on the hyperbola we have that |PF'|— |PF|=2a. Thatis,

\/(5+5) + (o) \/(5 5)2 + (L6) = 2a
= a=3. (So, its verticesare (-3,0)and (3,0) ).

Now, using the relationship b2 =c?—a?, we get b2 =25-9=16.

2 2

Therefore, the equation of the hyperbola is % Y 1.

16
You may find the asymptotes and sketch the hyperbola.

For a vertical hyperbola with center at origin (i.e., when transverse axis lies on y-axis), by
reversing the role of x and y we obtain the following equation which is illustrated in Figure 4.26.
y2 X2 ( Equation of vertical hyperbola with center C(0,0),

22 b2 foci (0, +c), vertices (0, +a), where ¢c?= a’+ b?
and asymptotes y =+(a/b)x )

Note: « For a vertical hyperbola, the coefficient of y* is positive and that of x* is negative .
« a’ is always the denominator of the positive term.



Figure 4.26: Vertical hyperbola centered at origin

Example 4.22: Find the foci and equation of the hyperbola with vertices V’(0,—1) and V(0, 1)
and an asymptote y =2x.

Solution: It is a vertical hyperbola with center C(0,0) and a = |CV| = 1. Since an asymptote of such
vertical hyperbola is y = (a/b)x and the slope of the given asymptote is 2, we have a/b=2= 1/b=2 =
b=1/2.Thus, *=a” +b’°=1+1/4=5/4.

So, the foci are (0, t \/E/ 2) and the equation of the hyperbolais y*—4x*=1.

(You may sketch the hyperbola)

(1) Equation of shifted hyperbolas:

The center of a horizontal or vertical hyperbola may be not at origin but at some other point C(h,k) as
shown in Figure 4.27. In this case, we form the equation of the hyperbolas by using the translation of
the xy-coordinate system that shifts its origin to the point C(h, k). As discussed in Section 4.4, the effect
of this translation is just replacing x and y by x—h and y—k, respectively, in the equation of the desired
hyperbola.



Figure 4.27: (a) Horizontal hyperbola (b) Vertical hyperbola

Therefore, the standard equation of a horizontal hyperbola (transverse axis parallel to x-axis) with
center C(h,k), length of transverse axis =2a, and length of conjugate axis =2b is

Center: C(h,k),

(x=h? _(y-k? _,
a2 b2 - Vertices: V' (h—a,k), V(h+a, k),

Foci: F'(h—c, k), F(h+c, k), where ¢*=a®+b

Asymptotes: Yy —K = i%(x —h)

Similarly, the standard equation of a vertical hyperbola (transverse axis parallel to y-axis) with center
C(h,k), length of transverse axis =2a, and length of conjugate axis =2b is

Center: C(h,k),

(y-k)2 (x—h)? _
x - b2 =1 Vertices: V' (h,k—a), V(h, k+a),

Foci: F'(h, k=), F(h, k+c), where ¢’=a’+b’

Asymptotes: Y —K =+2(x—h)

Example 4.23: Find the foci, vertices and the asymptotes of the hyperbola whose equation is

4(x+1)* - (y-2)° =4



and sketch the hyperbola.

Solution: Dividing both sides of the equation by 4 yields

(x+1)? — 0=2° _ 1.
4
This is equation of a hyperbola with center C(—1, 2). Note that the 'x’-term' is positive indicates that the
hyperbola is horizontal (principal axis y=2), a=1, b=2, and c*=d’+b* = C= \/g As a result the foci are
at (—1—\/5, 2) and (—1+ \/g, 2), vertices are at (-2,2) and (0,2) and the asymptotes are the lines
y—2=12(x+1), thatis, y=2x+4 and y=-2x. Consequently, the hyperbola is sketched as in Figure 4.28.

l ! »
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Figure 4.28: 4(x+1)>— (y-2)*=4

Example 4.24: Find the foci of the conic 9> —4y? —72X+8y +176 =0 and sketch its graph.
Solution: Group the x-terms and y-terms of the equation and complete their squares:

= OX*—T72X—4y* +8y =-176  (Multiply both sides by —1)

= —Ox* +72x+4y* -8y =176

= 4y’ -2y)- 9(x* —8x) =176

= 4(y* -2y +1°)— 9(X* —8x+4%) =176 +4-144

= 4(y-1°- 9(x—-4)>=36 (Next, divide each by 36)

I N ()
9 4




This is standard equation of a hyperbola whose transverse axis is parallel to the y-axis (as its 'y* term' is
positive) with center C (4,1), a®=9 and b?=4 .= c?*=a’+b*=13 = c=+/13. Thus, fociare F'
(4,1—+/13) and F(4,1++/13), and vertices (4, 113), i.e,, V'(4,-2) and V(4, 4). Moreover, the

asymptotes are Y —K = J_r%(x —h) . Hence, the asymptotes are

L: y-1= %(X —4) and L: y—-1= —%(X —4). The hyperbola is sketched in Figure 4.29

y

v

7 N

¢ V'(4,~ An/ptote

N

Example 4.25: Determine the locus or type of the conic section given by the equation
X%+ y2 +4x -2y =3.
Solution: Grouping the x-terms and y-terms of the equation and completing their squares yield
(y-D°-(x-2)* =0
= (y-)°=(x-2)?

= y-1l=14y(x-2)% = +(x—-2)

This represents pair of two lines intersecting at (2, 1), namely, y =x—1and y =—x+3.

Remark: Consider the equation: Ax*+Cy?’+Dx+Ey+F=0 when AC< O;
(i.e., A and c have opposite signs). Then, by completing the squares of x-terms and y-
terms you can convert the equation to the following form:



2 2 20,2
g) ( L) _ D?C+E®A-4ACF
A(x+2A +Cy+2C TAC .

Now, letting A = D2C+E?A —4ACF, you can conclude the following:

e If A=0, the equation represents a hyperbola with center (—%, —%)
o If A =0, the equation becomes y+ £ =+ ‘%‘(x+%) which are two lines

intersecting at (—%, —%) In this case, it is called degenerate hyperbola.

Exercise 4.5.2

For questions 1 to 9, find an equation of the hyperbola having the given properties and sketch its
graph.

=

Center at the origin, a focus at (5, 0), and a vertex at (3, 0)

2. Center at the origin, afocus at (0,-5), and a vertex at (0, —3).

3. Center at the origin, x-intercepts £3, an asymptote y = 2x.

4. Center at the origin, a vertex at (2, 0), and passing through (4, \/§) .
5. Center at (4, 2), avertex at (7, 2), and an asymptote 3y = 4x-10.

6. Fociat (-2,—-1) and F,(-2,9), length of transverse axis 6.

7. Fociat (1, 3) and (7, 3), and vertices at (2,3) and (6, 3).

8. \Vertices at (£3, 0), and asymptotes y =+2x

9. Eccentricity e=1.5, endpoints of transversal axis at (2, 2) and (6, 2).

For questions 10 to 17 find the center, foci, vertices and asymptotes of the hyperbola having the
given equation and sketch its graph.

10. ﬁ_y_zzl 14. (x-2% (y+3)° _1
64 36 9 16
11. y?2-x?=9 15. 4x?—y24+2y-5=0
12. x2—y2=9 16. 2x2—3y2—4x+12y+8:0
13. (y+1)?—4(y+2)> =8 17. —16x? +9y? —64x+90y +305 =0

18. Find an equation of hyperbola whose major axis is parallel to the x-axis, has a focus at (2,1) and




its vertices are at the endpoints of a diameter of the circle x? + y2 -2y =0.

19. A satellite moves along a hyperbolic curve whose horizontal transverse axis is 24 km and an

asymptote Yy = % X+ 2. Then what is the eccentricity of the hyperbola?

20 Two regions A and B are separated by a sea. The shores are roughly in a shape of hyperbolic curves
with asymptotes Yy = +3X and a focus at (30,0) taking a coordinate system with origin at the

center of the hyperbola. What is the shortest distance between the regions in kms?

21. Determine the type of curve represented by the equation

In each of the following cases: (a) k <0, (b) 0<k< 16, (c) k>16

4.6 The General Second Degree Equation

By the end of this section, you should

e know the general form of second degree equation representing conic sections whose lines of
symmetry are not necessarily parallel to the coordinate axes.

e know the rotation formula for rotating the coordinate axes.

e be able to find equivalent equation of a conic section under rotation of the reference axes.

e be able to apply the rotation formula to find a suitable coordinate system in which a given general
second degree equation is converted to a simpler standard form.

e be able to convert a given general second degree equation to an equivalent simpler standard form
of equation of a conic section.

e be able to identify a conic section that a given general second degree equation represents and

sketch the corresponding conic section.

In the previous sections we have seen that, except in degenerate cases, the graph of the equation
Ax* +Cy’+Dx+Ey+F=0

is a circle, parabola, ellipse or hyperbola. The construction of these equations was based on the

assumption that the axis of symmetry of a conic section is parallel to one of the coordinate axes.

The assumption seems to be quite restrictive because the axis of symmetry for a parabola,



ellipse, or hyperbola can be any oblique line as indicated in their corresponding definitions (See
Figures 4.12, 4.18 and 4.24).

However, the reason why we have assumed that is not only for simplicity but there is always a
coordinate system whose one of the axes is parallel to a desired line of symmetry. In particular,
we can rotate the axes of our xy-coordinate system, whenever needed, so as to form a new x'y'-
coordinate system such that either the x'- axis or y'-axis is parallel to the desired line of
symmetry. Toward this end, let us review the notion of rotation of axes.

4.6.1 Rotation of Coordinate Axes

A rotation of the x and y coordinate axes by an angle & about the origin O(0,0) creates a new

X'y'-coordinate system whose x'-axis is the line obtained by rotating the x-axis by angle 8 about

O and y'-axis is the line obtained by rotating the y-axis in the same way. This makes a point P

to have two sets of coordinates denoted by (x,y) and (x’,y’) relative to the xy- and x'y’-coordinate

axes, respectively.(See Figure 4.30).
yA

' (xy)
y vy :,,'.,’,\(x',y')

v

Figure: 4.30

The angle @ considered in the above discussion is called the angle of rotation. Our aim is to find
the relationships between the coordinates (x,y) and the coordinates (x',y’) of the same point P.

To find this relationships, let P(x,y) be any point in xy-plane, & be an angle of rotation (i.e., € is
angle between x and x' axes ) and ¢ be the angle between OP and x'-axis (See Figure 4.31).



So, letting |OP| =r observe that

yA
'= '=rsing . .... L@ : (x'y')
X'=rcosg, y=rsing @ y y Plgy)
and ,”’é\\ yr f
. -7 \\ X
X =rcos(f + ¢), y=rsin(@+¢) . ... (2) T o/ v
y o X

Then, using the trigonometric identities
cos(6 + ¢) = cos 6 cos ¢ —sin dsin ¢ 9 O
sin(@ + ¢) = sin @ cos ¢ + cos Asin ¢

and (1), the equations in (2) become

v

Figure: 4.31

X=X'cosd-y'sing N )]
y =X'sind+ y'cosd

Moreover, these equations can be solved for X’ and y’ in terms of x and y to obtain
X'= xcosé+ysind N €Y
y'=—xsinf+ ycosé

The Equations (3) and (4) are called rotation formulas. It follows that if the angle of rotation &
is given, then Equation (3) can be used to determine the x and y coordinates of a point P if we
know its x" and y’ coordinates. Similarly, Equation (4) can be used to determine the x’ and y’
coordinates of P if we know its x and y coordinates.
Example 4.26: Suppose the x and y coordinate axes are rotated by /4 about the origin.

(a) Find the coordinates of P(1, 2) relative to the new X' and y' axes.

(b) Find the equation of the curve xy = 1 relative to the new x'y'-coordinate system and

sketch its graph.

Solution: The given information about P and the curve are relative to the xy-coordinate system
and we need to express them in terms of x' and y' coordinates relative to the new x'y’-coordinate
system obtained under the rotation of the original axes by 8 = n/4 rad about the origin. Thus, we

2

use cosZ =sinZ == in the relevant rotation formula to obtain the following.

(a) Since P(1,2) has the coordinates x=1 and y=2, its x" and y' coordinates are, using formula (4)
X'=Y2(1)+ 32 (2) = 32
y=-2@+2@=2
Therefore, the coordinates of P relative to the new x' and y' axes are (3‘[ , ‘ZF )
(b) We need to express x and y in the equation xy =1 in terms of x' and y' using the rotation

J2

formula (3). So, again since cos Z =sin Z ==, we obtain from formula (3):

‘F ‘Fy and y_fx+‘2ry

Therefore, xy=1 = (‘F ‘gy)(f {y)



Note that this is an equation of a hyperbola with center at origin vertices (—\/5,0) and

(v/2,0) in the xy'-coordinate system with principal axis on x*-axis. Since the x and y- axes
were rotated though an angle of n/4 to obtain x' and y'-axes, the hyperbola can be sketched
as in Figure 4.32. (You may use Formula (3) to show that the vertices (—\/E,O) and

(\/5,0) are (-1-1) and (1,1), respectively, relative to the x and y-axes).

Figure 4.32: xy=1

Example 4.27: Find an equation of the ellipse whose center is the origin, vertices are (—4,-3)
and (4, 3), and length of minor axis is 6.

Solution: The position of the ellipse is as shown in Figure 4.33.
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Figure 4.33:
To apply the standard equation of ellipse we use the x'y'-coordinate system such that the x'-axis
coincide with the major axis of the ellipse. Therefore, the equation of the ellipse relative to the
Xy' systemis
x2 y?2
—2 + —2 = 1
a® b



Moreover, from the given information, a® = |OV|* = 3%+42 =25;  and
length of minor axis=2b=6 = b=3. So, b*=9.
Hence, the equation of the ellipse relative to the x'y' -coordinate system is

12 12

X il o1 or ox?428y?=225 . . .. ... ..()
25 9

Now we use the rotation formula to express the equation relative to our xy-coordinate system.
So, let 9 the angle between x-axis and x'-axis. Then, observe that

cosd=4/5 and sind=3/5.
Thus, using rotation formula (4) we get:

X'= xcos@+ysind=2x+3y
y'=-xsing+ycosf=2x+2y
Now we substitute these for x’ andy’ in (1) to obtain
4,3 3y, 4yP _
9(§x+g y)2 +25(?x+gy) =225
And simplifying this we get
369x° — 384Xy + 481y* — 5625 = 0

which is the equation of the ellipse in the xy- coordinate system.

Exercise 4.6.1

1. Suppose the xy-coordinate axes are rotated 60° counterclockwise about the origin to obtain the
new Xx'y'-coordinate system.

(a) If each of the following are coordinates of points relative to the xy-system, find the coordinates

of the points relative to the x'y’- system.
(i) (5,0) (ii) (1,4) (i) (0, 1) (iv) (-1/2,5/2)  (v) (-2,-1)

(b) Find the equation of the following lines and conics relative to the new x'y’- system.

() x=5 (iv) (x-1)>+y’=4 (vii) X¥*+4y"—4x=0
(i) x-2y=1 (v) x*—-4y=1 (vii) x¥*—4y*=1
(i) x*+y*=1 (vi) 4x*+(y—=2)7=4 (ix) —=* +y*=2y=0

2 Suppose the xy-coordinate axes are rotated 30° counterclockwise about the origin to obtain the
new Xx'y'-coordinate system. If the following points are with respect to the new x'y'- system, what
is the coordinates of each point with respect to the old xy-system?

@ (0,2 ()24 (0 (1-3) (@ (V3,-3)

4.6.2 Analysis of the General Second Degree Equations
In the previous sections we have seen that the equation of the form



A +Cy2+Dx+Ey+F=0, . . . . . .. (1)
represents a conic section (a parabola, ellipse or hyperbola) whose axis of symmetry is parallel
to one of the coordinate axes except in degenerate cases. In Subsection 4.6.1 we have also seen
some examples of conic sections whose equations involve xy term when their lines of symmetry
are not parallel to either of the axes. Now we would like to analyze the graph of any quadratic
(second degree) equation in x and y of the form

Ax*+Bxy + Cy’+Dx +Ey +F =0, T )
where B=0. In order to analyze the graph of Equation (2), we usually need to convert it into an
equation of type (1) in certain suitable reference system. To this end, we first prove the
following Theorem.

Theorem 4.3: Consider a general second degree equation of the form (2), i..e.,
Ax’ +Bxy +Cy’+Dx+Ey+F=0, whereB#0, . . . . . . . . . (2
there is a rotation angle & (0,7/2) through which the xy-coordinate system rotates to a new
x'y’-coordinate system in which Equation (2) reduces to the form
A'x?+Cy?+D'x +E'y +F = 0. T )

Proof: Let the xy-coordinate system rotated by an angle @ about the origin to form a new x'y’-
coordinate system. Then, from rotation formula (3), we have
X=Xx'cos@—y'sind and y=x'sind+y'cosé.
We can now substitute these for x andy in Equation (2) so that
A(X'cos@—y'sin@)* + B(x'cos@—y'sin@)(x'sin @+ y'cos@) + C(x'sin @+ y'cos O )
+D(X'cos@—y'sind) +E(X'sin@+y'cosd) +F=0.

After some calculations, combining like terms (those involving x?, x'y*, y?, and so on), we get
equation of the form

A'X? + BXy + Cy?+D'X +Ey +F'=0 . . . . . . ... (@4
where B'=2(C—A) sinfcosd + B( cos’0 —sin’8) .
Here the exact expressions for A', C', D', E' and F' are omitted as they are irrelevant. What we
need is to get the angle of rotation @ for which Equation (4) has no X'y’ term, thatis, B'=0.
This means that,

2(C-A) sin@cosé + B( cos’0 —sin’d)=0.

Since 2sinfcos@ =sin26 and cos’d —sin’6 = cos26, this equation is equivalent to
(C-A)sin26 +Bcos26 =0
cos260 A-C
sin 20 - B

or cotzez'a‘f;C I )

or . since B=O0.




That is, if we choose the angle of rotation & satisfying (5), then B' = 0 in Equation (4) so that the
resulting equation in x'y’-coordinate system is in the form of Equation (3). Moreover, we can
always find an angle that satisfies cot(26) = (A—C)/B for any A, C, B € R, B=#0 since the range
of the cotangent function is the entire set of real numbers. Note also that since 26 (0, «), the
angel of rotation € can always be chosen so that 0 < < /2. So, the Theorem is proved.

Remark: If A=C, then cot29=LE‘f=o = 20=n/2 = O=rn/4.

Therefore, we can rewrite the result of the above Theorem as follows:

The rotation of the xy-coordinate system by angle & creates an x'y’-coordinate system in
which a general second degree equation ~ Ax” + Bxy + Cy*+ Dx+Ey + F=0, B=0,

is converted to an equation A'x? + Cy? + D'x' + E'y'+ FF=0 (with no xy’ term)

if we choose 8 (0, n/2) such that

tan29=i, if AC
A-C

9:%, if A=C

Example 4.28: Use rotation of axes to eliminate the xy term in each of the following equations,
describe the locus (type of conic section) and sketch the graph of the equation

a) X2 +2Xy + y2 —8«/§x+8\/§y—32:0
(b) 73x*— 72xy +52y* + 30x + 40y — 75=0
Solution:
(a) Given: x? +2xy +y? —8J2x+8J/2y—-32=0 = A=C=1. So, from the above Remark, the

X'=y' X'+y'
= and X= .
V2

. o IO (XY
rotation angle is 8=n/4 = cosfd=sind 5= NG

Now we substitute these for x and y in the given equation:

(20) o Z X)) /50 2) +8/2(K) 320
Expanding the squared expressions, combining like terms and simplifying, we obtain
x248y'-16=0 or, x2=-8(y-2)
This is an equation of a parabola. Its vertex is (h’,k") = (0,2) relative to the x'y'-system, principal
axis is on y'-axis and open towards negative y' direction. (You can show that its vertex is (h, k)

= ( L f) relative to the xy-system). The graph of the equation is sketched in Figure 4.34.



Figure 4.34: x° +2xy + y2 —8V2x+8V2y —32=0
(b) Given: 73x* — 72xy +52y* +30x +40y—75=0 = A=73, B=-72 and C=52.

Hence,

tanzezA;?C: —%:—? = The terminal side of 28is through (-7, 24) since 0<26< m.

= coszezg—; . Now as 0< @< m/2, both cos@and sindare positive. Hence,
1+cos20 [1-7/25 3 . 1-cos26 1+7/25 4
cosH:\/ :\/ == and SInQ:\/ :\/ =—
2 2 5 2 2 5
This implies the x-axis is through the coordinate point (3,4), that is the line y = (4/3)x.
Therefore, using the rotation formula (3), we get
x= XA and oy S
5 5
Now we substitute these for x and y in the given equation to obtain
] 2 1 1 1 1 1 1 2 1 1 1 1
B (3x-4y)” — L2 (3x—4y'\ax+3y')+ 32 (4x+3y')" + 30 (3x—-4y') + 42 (4x+3y') - 75=0.

Expanding the squared expressions, combining like terms and simplifying, we obtain

25x'2 +100y2 +50x-75=0
Completing the square for x’ terms and divide by 100 to get
L1y 2
(x'+1) N
4
which is an ellipse with center at (h',k")= (-1, 0) relative to the x'y'-system, major axis on x'-

axis (which is the line y=(4/3)x ), length of major axis =4 and length of minor axis =2. (You

can show that the center is (h, k) = (— % - %) relative to the xy-system). The graph of the

y'? =1

equation is sketched in Figure 4.35.



Figure 4.35: 73x° — 72xy +52y2 + 30x +40y—75=0

Exercise 4.6.2

1. Find an equation of the conic section having the given properties and sketch its graph.
(a) Ellipsi with center at origin, foci at (—2,2) and (2, 2), and length of major axis 2\/§ .
(b) Parabola whose vertex is at (3, 4) and focus (-5,-2)
(c) Hyperbola whose foci are (-2, 2) and (2, —2), and length of transverse axis 2\/5.

2. Use rotation of axes to eliminate the xy term in each of the following equations, describe the locus
(type of conic section) and sketch the graph of the equation.

(@) 17¥*—12xy +8y*—36=0

(b) 8x* +24xy + > —1=10

(c) ¥ —2xy + y*—5y =0

(d) 2 +xy =0

(e) S5x*+ 6xy +5)° —4x+4y—4=0

(f) X +4xy +4y°+2x—2y +1=0
3. Show thatif B> 0, then the graph of
2 _
X“+Bxy=F,

is a hyperbola if F#0, and two intersecting lines if F=0.
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